Supporting information

Near-Infrared Polarization-Sensitive Photodetection

via Interfacial Symmetry Engineering of Si/MAPbl₃

Heterostructural Single Crystal

Jianbo Wu^{a, b}, Xinyuan Zhang^{a, b}, Ziyang Wang^a, Lishan Liang^a, Xinyi Niu^a, Qianwen Guan^{a, b}, Shihai You^a, and Junhua Luo^{*a, b, c}

a J. Wu, X. Zhang, Z. Wang, L. Liang, X. Niu, Q. Guan, S. You, Prof. J. Luo
State Key Laboratory of Structural Chemistry
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
Fuzhou, Fujian 350002, P. R. China
E-mail: jhluo@fjirsm.ac.cn
b J. Wu, X. Zhang, Q. Guan, Prof. J. Luo
University of Chinese Academy of Sciences
Beijing 100049, P. R. China

c Prof. J. Luo School of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang, Jiangxi 330022, P. R. China

Experimental Section

Materials: The materials used were lead iodide (Pbl₂, Aladdin Chemistry Co., Ltd., 99.9%), methylamine iodide (MAI, self-synthesized), γ-butyrolactone (GBL, Shanghai Tichem Chemical Co., Ltd., 99.8%), (3-aminopropyl)triethoxysilane (APTES, Aladdin Chemistry Co., Ltd., >99%), 1,2-dichlorobenzene (DCB, Aladdin Chemistry Co., Ltd., >99%), hydroiodic acid (HI, Aladdin Chemistry Co., Ltd., 48% wt/wt aq), 2-propanol (IPA, Aladdin Chemistry Co., Ltd., >99.5%)

Preparation of the precursor solutions: The raw materials 2.305 g PbI₂ and 0.795 g MAI were dissolved in 5 mL GBL solvent. A bright-yellow solution was obtained.

Growth of MAPbI₃ single crystal: MAPbI₃ single crystals were grown via inverse-temperature crystallization method. The precursor solution was transferred to a vial and then heat up to 100 $^{\circ}$ C in oil bath and maintained hours under this temperature for the growth of the single crystal.

Preparation of modified Si substrate: The method of modifying Si substrate was in accordance with the previous report. The precleaned Si (n-type) wafer was placed into a mixture of DCB and APTES solvent (20:1) for 12 h at 50 °C and ultrasonically rinsed with IPA to obtain NH_2 -terminatedmolecules on the surface. The wafer was then treated with HI (aq.) to convert the amino groups into $-NH_3I$ groups.

Growth of Si-integrated MAPbI₃ single crystal: A small droplet of the MAPbI₃/GBL solution was dropped onto the modified Si wafer. Then, the Si wafer with small droplet was heat to 50° C to volatilize the solvent and obtain the seed crystal. After that, the Si wafer with the seed crystal was placed into the preheat MAPbI₃/GBL solution for the growth of the Si-integrated MAPbI₃ single crystal. The solution was heated to 100 °C and maintained this temperature for hours.

Powder X-ray diffraction: Powder X-ray diffraction measurement was performed on a Rigaku MiniFlex 600 diffractometer at atmosphere environment. The diffraction patterns were collected in the 2θ range of 5°–50° with a step size of 0.5°/min.

Scanning electron microscope measurement (SEM): The SEM image was collected on ZEISS Sigma 300 field-emission scanning electron microscope operated at 3kV.

Absorption spectrum measurement: Absorption spectrums of MAPbl₃ was performed on a Perkin-Elmer Lambda 900 UV–Vis–NIR spectra photometer at room temperature. In which BaSO₄ was used as the 100% reflectance reference.

Photoluminescence spectra measurements: Emission spectra of MAPbl₃ and the MAPbl₃/Si heterojunction were performed on an Edinburgh FLS1000 fluorescence spectrometer. The lifetime of MAPbl₃ and the MAPbl₃/Si heterojunction were measured on an Edinburgh FLS1000 fluorescence spectrometer using a picosecond pulsed diode laser. The dynamics of emission decay were monitored by using the FLS1000's time-correlated single-photon counting capability (1,024 channels; 500 ns window) with data collection for 10,000 counts in the maximum channel.

Optoelectronic performances measurements: The current vs voltage (I–V) and photocurrent vs time (I–t) with light on and off (measured at zero bias) were measured using a high precision electrometer (Keithley 6517B). I–V tests were collected under the 405 nm, 520 nm, 637 nm and 785 nm continuous-wave lasers (ITC4001). I–t was collected under the 785 nm continuous-wave lasers (ITC4001). The incident light intensity was measured by light power meter.

Results and Discussion

Figure S1. Schematic of the MAPbl₃/Si heterostructure

Figure S2. PXRD patterns of the simulation of $MAPbI_3$ crystal, naturally grown crystal, and the peeled-off $MAPbI_3$ crystal from the Si wafer.

Figure S3. XRD pattern of the $MAPbI_3$ single crystal.

Figure S4. The calculation of MAPbI₃ optical band gap via corresponding Tauc plots.

Figure S5. Schematic illustration of the MAPbI₃ SC device.

Figure S6. A schematic of depletion region at the $MAPbI_3/Si$ heterostructure interface

Figure S7. Dark current of the heterojunction photodetector

Figure S8. (a) Photograph of Ag/MAPbI₃/Ag, Ag/Si/Ag and Ag/Heterojunction/Ag device in the same heterostructure sample. (b) *I-V* curve of Ag/MAPbI₃/Ag under the dark condition. (c) *I-V* curve of Ag/Si/Ag under the dark condition. (d) *I-V* curve of Ag/Heterojunction/Ag under the dark condition.

Figure S9. *I–V* curves of the heterojunction photodetector under the different wavelength illumination at the power density of 19.4 mW/cm². The insert shows the photocurrents of the heterojunction device as a function of wavelength.

Figure S10. I-V curves of the MAPbI₃ SC photodetector under the different wavelength illumination at the power density of 19.4 mW/cm².

Figure S11. I-V curves of the MAPbI₃ SC photodetector under the 785 nm illumination with different power density.

Figure S12. Open-circuit voltage of the heterojunction device.

Figure S13. (a) Schematic illustration of the $MAPbI_3/Si$ heterostructure photodetector with different incident directions. (b) *I-V* curves of heterostructure photodetector with parallel light irradiation. (c) *I-V* curves of heterostructure photodetector with perpendicular light irradiation. (d) Light power density dependent photocurrent with different incident directions.

Figure S14. Light power density dependent photocurrent of the MAPbI₃/Si device under the selfdriven mode.

Figure S15. The current noise power spectra at 0 V bias.

Figure S16. The response time of the heterojunction photodetector under the self-powered mode at 785 nm.

Figure S17. The response time of the heterojunction photodetector under the self-powered mode at 940 nm.

Figure S18. The response time of the MAPbl₃ SC photodetector under 10 V bias at 785 nm.

Figure S19. Polarized photocurrent of the pure (a) MAPbI₃ and (b) Si.

Devices	λ (nm)	D* (Jones)	Polarized ratio	Condition	Ref.
MAPbl ₃ /Si	405-940	7.35 × 10 ¹²	2.8 @ 940 nm	Self-powered	This
			3.3 @ 785 nm		work
MAPbl ₃ single crystal	275-790	-	-	1 V	1
MAPbl ₃ /graphene	260-900	4.5×10^{11}	-	Self-powered	2
MAPbl ₃ /PDPP3T	300-937	1.5×10^{10}	-	1 V	3
PTAA/MAPbI ₃ /C ₆₀ /BCP	350-800	7.8×10^{12}	-	0.1 V	4
MAPbl ₃ nanocrystal	400-980	1.77 × 10 ¹³	-	Self-powered	5
MAPbl ₃ nanoribbon	300-800	8.21 × 10 ¹¹	1.44 @ white light	2 V	6
MAPbl ₃ nanowires	530	2 × 10 ¹³	1.3 @ 530 nm	1 V	7
MAPbl ₃ needlecrystal	405	-	1.57 @ 405 nm	5 V	8
MAPbl ₃ nanowires	200-1000	4.73 × 10 ¹²	2.2 @ 520 nm	1 V	9

References

1 Z. Lian, Q. Yan, Q. Lv, Y. Wang, L. Liu, L. Zhang, S. Pan, Q. Li, L. Wang, J. L. Sun, Sci. Rep. 2015, 5, 16563-16573.

- 2 J. Li, S. Yuan, G. Tang, G. Li, D. Liu, J. Li, X. Hu, Y. Liu, J. Li, Z. Yang, S. F. Liu, Z. Liu, F. Gao, F. Yan, ACS Appl. Mater. Interfaces 2017, 9, 42779-42787.
- 3 S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, G. Shi, *Adv. Mater.* **2016**, *28*, 5969-5974.
- 4 L. Shen, Y. Fang, D. Wang, Y. Bai, Y. Deng, M. Wang, Y. Lu, J. Huang, *Adv. Mater.* **2016**, *28*, 10794-10800.
- 5 C. Perumal Veeramalai, S. Yang, R. Zhi, M. Sulaman, M. I. Saleem, Y. Cui, Y. Tang, Y. Jiang, L. Tang, B. Zou, *Adv. Opt. Mater.* **2020**, *8*, 2000215-2000224.
- 6 S. Lim, M. Ha, Y. Lee, H. Ko, Adv. Opt. Mater. 2018, 6, 1800615-1800624.
- 7 L. Gao, K. Zeng, J. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. Song, G. Niu, J. Tang, *Nano Lett.* **2016**, *16*, 7446-7454.
- 8 Z. Zhao, Y. Li, Y. Du, L. Zhang, J. Wei, F. Lin, ACS Appl. Mater. Interfaces 2020, 12, 44248-44255.
- 9 R. Huang, D.-H. Lin, J.-Y. Liu, C.-Y. Wu, D. Wu, L.-B. Luo, Sci. China Mater. 2021, 64, 2497-2506.