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Experimental Section

Materials: The materials used were lead iodide (PbI2, Aladdin Chemistry Co., Ltd., 99.9%), 
methylamine iodide (MAI, self-synthesized), γ-butyrolactone (GBL, Shanghai Tichem Chemical Co., 
Ltd, 99.8%), (3-aminopropyl)triethoxysilane (APTES, Aladdin Chemistry Co., Ltd., >99%), 1,2-
dichlorobenzene (DCB, Aladdin Chemistry Co., Ltd., >99%), hydroiodic acid (HI, Aladdin Chemistry 
Co., Ltd., 48% wt/wt aq), 2-propanol (IPA, Aladdin Chemistry Co., Ltd., >99.5%)

Preparation of the precursor solutions: The raw materials 2.305 g PbI2 and 0.795 g MAI were 
dissolved in 5 mL GBL solvent. A bright-yellow solution was obtained.

Growth of MAPbI3 single crystal: MAPbI3 single crystals were grown via inverse-temperature 

crystallization method. The precursor solution was transferred to a vial and then heat up to 100℃ 
in oil bath and maintained hours under this temperature for the growth of the single crystal.

Preparation of modified Si substrate: The method of modifying Si substrate was in accordance 
with the previous report. The precleaned Si (n-type) wafer was placed into a mixture of DCB and 
APTES solvent (20:1) for 12 h at 50 °C and ultrasonically rinsed with IPA to obtain NH2-
terminatedmolecules on the surface. The wafer was then treated with HI (aq.) to convert the 
amino groups into –NH3I groups.

Growth of Si-integrated MAPbI3 single crystal: A small droplet of the MAPbI3/GBL solution was 

dropped onto the modified Si wafer. Then, the Si wafer with small droplet was heat to 50℃ to 
volatilize the solvent and obtain the seed crystal. After that, the Si wafer with the seed crystal was 
placed into the preheat MAPbI3/GBL solution for the growth of the Si-integrated MAPbI3 single 
crystal. The solution was heated to 100 °C and maintained this temperature for hours.

Powder X-ray diffraction: Powder X-ray diffraction measurement was performed on a Rigaku 
MiniFlex 600 diffractometer at atmosphere environment. The diffraction patterns were collected 
in the 2θ range of 5°–50° with a step size of 0.5°/min.

Scanning electron microscope measurement (SEM): The SEM image was collected on ZEISS Sigma 
300 field-emission scanning electron microscope operated at 3kV.

Absorption spectrum measurement: Absorption spectrums of MAPbI3 was performed on a Perkin-
Elmer Lambda 900 UV–Vis–NIR spectra photometer at room temperature. In which BaSO4 was 
used as the 100% reflectance reference.

Photoluminescence spectra measurements: Emission spectra of MAPbI3 and the MAPbI3/Si 
heterojunction were performed on an Edinburgh FLS1000 fluorescence spectrometer. The lifetime 
of MAPbI3 and the MAPbI3/Si heterojunction were measured on an Edinburgh FLS1000 
fluorescence spectrometer using a picosecond pulsed diode laser. The dynamics of emission decay 
were monitored by using the FLS1000’s time-correlated single-photon counting capability (1,024 
channels; 500 ns window) with data collection for 10,000 counts in the maximum channel.
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Optoelectronic performances measurements: The current vs voltage (I–V) and photocurrent vs 
time (I–t) with light on and off (measured at zero bias) were measured using a high precision 
electrometer (Keithley 6517B). I–V tests were collected under the 405 nm, 520 nm, 637 nm and 
785 nm continuous-wave lasers (ITC4001). I–t was collected under the 785 nm continuous-wave 
lasers (ITC4001). The incident light intensity was measured by light power meter.
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Results and Discussion

Figure S1. Schematic of the MAPbI3/Si heterostructure

Figure S2. PXRD patterns of the simulation of MAPbI3 crystal, naturally grown crystal, and the 
peeled-off MAPbI3 crystal from the Si wafer.
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Figure S3. XRD pattern of the MAPbI3 single crystal.

Figure S4. The calculation of MAPbI3 optical band gap via corresponding Tauc plots.
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Figure S5. Schematic illustration of the MAPbI3 SC device.

Figure S6. A schematic of depletion region at the MAPbI3/Si heterostructure interface

Figure S7. Dark current of the heterojunction photodetector
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Figure S8. (a) Photograph of Ag/MAPbI3/Ag, Ag/Si/Ag and Ag/Heterojunction/Ag device in the 
same heterostructure sample. (b) I-V curve of Ag/MAPbI3/Ag under the dark condition. (c) I-V curve 
of Ag/Si/Ag under the dark condition. (d) I-V curve of Ag/Heterojunction/Ag under the dark 
condition.

Figure S9. I−V curves of the heterojunction photodetector under the different wavelength 
illumination at the power density of 19.4 mW/cm2. The insert shows the photocurrents of the 
heterojunction device as a function of wavelength.
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Figure S10. I−V curves of the MAPbI3 SC photodetector under the different wavelength 
illumination at the power density of 19.4 mW/cm2.

Figure S11. I−V curves of the MAPbI3 SC photodetector under the 785 nm illumination with 
different power density.
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Figure S12. Open-circuit voltage of the heterojunction device.

Figure S13. (a) Schematic illustration of the MAPbI3/Si heterostructure photodetector with 
different incident directions. (b) I-V curves of heterostructure photodetector with parallel light 
irradiation. (c) I-V curves of heterostructure photodetector with perpendicular light irradiation. (d) 
Light power density dependent photocurrent with different incident directions.



10

Figure S14. Light power density dependent photocurrent of the MAPbI3/Si device under the self-
driven mode.

 
Figure S15. The current noise power spectra at 0 V bias.
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Figure S16. The response time of the heterojunction photodetector under the self-powered mode 
at 785 nm.

Figure S17. The response time of the heterojunction photodetector under the self-powered mode 
at 940 nm.
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Figure S18. The response time of the MAPbI3 SC photodetector under 10 V bias at 785 nm.

Figure S19. Polarized photocurrent of the pure (a) MAPbI3 and (b) Si.

Table S1. Performance comparison of MAPbI3/Si heterojunction NIR polarization-sensitive photodetector with other devices.
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Devices λ (nm) D* (Jones) Polarized ratio Condition Ref.

MAPbI3/Si 405-940 7.35 × 1012
2.8 @ 940 nm

3.3 @ 785 nm
Self-powered

This 

work

MAPbI3 single crystal 275-790 - - 1 V 1

MAPbI3/graphene 260-900 4.5 × 1011 - Self-powered 2

MAPbI3/PDPP3T 300-937 1.5 × 1010 - 1 V 3

PTAA/MAPbI3/C60/BCP 350-800 7.8 × 1012 - 0.1 V 4

MAPbI3 nanocrystal 400-980 1.77 × 1013 - Self-powered 5

MAPbI3 nanoribbon 300-800 8.21 × 1011 1.44 @ white light 2 V 6

MAPbI3 nanowires 530 2 × 1013 1.3 @ 530 nm 1 V 7

MAPbI3 needlecrystal 405 - 1.57 @ 405 nm 5 V 8

MAPbI3 nanowires 200-1000 4.73 × 1012 2.2 @ 520 nm 1 V 9


