Transcriptomic Landscape of Sodium Butyrate-Induced Growth Inhibition on Human Colorectal Cancer Organoids

Supplementary methods, figures, and tables

Materials and Methods

Cryopreservation and Resuscitation of Organoids

Cryopreservation was undertaken after the growth status of organoid was stable. To stock organoids, organoids were harvested using cold PBS and then centrifuged at 1700 rpm for 3 min at 4 °C. Supernatant was removed and organoid pellet was digested with TrypLETM Express Enzyme (Thermo, USA) for 45 min at 37 °C. Then, organoid pellet was resuspended in Cell Culture Freezing Medium (Beyotime, China, C0210). The stock vials were stored at -80°C for 24 h and then transferred to the liquid nitrogen tank for long-term storage. For the first 2 weeks after thawing, the culture medium was supplemented with Y-27632 (10 μ M) so as to ensure organoid growth.

Figure S1. Representative images of human normal colon organoids development from crypts. After a few days of cultivation, normal organoids show budding state, consisting of a central lumen lined by villus-like epithelium and several surrounding crypt-like domains. Scale bar, 100μ M.

Figure S2. Subnetworks based on *ITGA2B* (A) and *ITGB7* (B). Significantly candidate genes including *ITGA2B* and *ITGB7* play central roles in ECM-integrin pathway.

Figure S3. Pathway analysis of ECM-receptor interaction. Red represents up-regulated proteins and blue for down-regulated proteins.

Figure S4. Result of gene set enrichment analysis (GSEA). (A) Enrichment plot of "G0 and early G1" between NaB-treated and control samples. (B) Heatmap of get sets in "G0 and early G1" pathway based on transcripts expression. (C) Enrichment plot of "aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects" between NaB-treated and control samples. (D) Heatmap of get sets in "aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects" between NaB-treated and control samples. (D) Heatmap of get sets in "aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects" based on transcript expression.

Figure S5. The expression levels of all collagen family genes in the samples.

Figure S6. The expression levels of all integrin family genes in the samples.

Table S1The KEGG terms enriched in DEGs

Term	Gene count	p value	Significant genes
Complement and coagulation cascades	11	4.69556E-05	CFD, C3, CR2, C8G, CFH, PLAU, PROS1, SERPING1, C4BPB, A2M, KNG1
Hematopoietic cell lineage	12	7.16522E-05	CR2, HLA-DRB5, CD8B, IL1R1, ANPEP, ITGA1, ITGA2B, CD7, CD1D, CD36, CD33, HLA-DRB1
Leishmaniasis	10	0.0003215	C3, MAPK11, HLA-DMA, HLA-DRB5, NOS2, TGFB3, ITGB2, TLR4, HLA-DRB1, HLA-DPA1
ECM-receptor interaction	11	0.000339118	COMP, LAMA2, SV2B, LAMA1, COL6A2, COL11A2, ITGA1, ITGA2B, COL6A3, ITGB7, CD36
Phagosome	14	0.000754856	COLEC12, COLEC11, HLA-DRB5, ITGB2, TUBB4A, HLA-G, C3, COMP, HLA-DMA, CTSL, CD36, TLR4, HLA-DRB1, HLA-DPA1
Staphylococcus aureus infection	8	0.001305503	CFD, C3, HLA-DMA, HLA-DRB5, CFH, ITGB2, HLA-DRB1, HLA-DPA1
Legionellosis	8	0.001305503	C3, ITGB2, EEF1A2, IL18, CXCL1, CXCL2, TLR4
Cell adhesion molecules (CAMs)	13	0.001493909	HLA-DRB5, ITGB2, HLA-G, CLDN11, HLA-DMA, NFASC, PTPRC, CD8B, CLDN18, ITGB7, TIGIT, HLA-DRB1, HLA-DPA1
Rheumatoid arthritis	10	0.001562851	HLA-DMA, HLA-DRB5, TGFB3, MMP1, CTSL, ITGB2, IL18, TLR4, HLA-DRB1, HLA-DPA1
Inflammatory bowel disease (IBD)	8	0.003523692	HLA-DMA, HLA-DRB5, TGFB3, RORC, IL18, TLR4, HLA-DRB1, HLA-DPA1
Malaria	7	0.003866474	COMP, TGFB3, ITGB2, IL18, CD36, HBA1, TLR4
Amoebiasis	10	0.005554102	C8G, LAMA2, NOS2, IL1R1, TGFB3, PRKCB, LAMA1, COL11A2, ITGB2, TLR4
Toxoplasmosis	10	0.00706023	MAPK11, HLA-DMA, HLA-DRB5, LAMA2, NOS2, TGFB3, LAMA1, TLR4, HLA-DRB1, HLA-DPA1
Tuberculosis	13	0.008951785	HLA-DRB5, NOS2, TGFB3, ITGB2, IL18, C3, MAPK11, HLA-DMA, ITGAX, LBP, TLR4, HLA-DRB1, HLA-DPA1
Mineral absorption	6	0.011257196	MT2A, ATP1A3, MT1G, MT1H, MT1X, MT1E
Arachidonic acid metabolism	7	0.011288206	GPX3, CYP4F2, GPX8, PLA2G3, CYP4F8, ALOX15B, PTGS1
Salmonella infection	8	0.014363393	MAPK11, NOS2, IL18, CXCL1, LBP, CXCL3, CXCL2, TLR4
Graft-versus-host disease	5	0.018380837	HLA-DMA, HLA-DRB5, HLA-G, HLA-DRB1, HLA-DPA1
Protein digestion and absorption	8	0.01929757	COL18A1, PRSS1, MEP1B, MEP1A, COL6A2, COL11A2, COL6A3, ATP1A3
Allograft rejection	5	0.026955161	HLA-DMA, HLA-DRB5, HLA-G, HLA-DRB1, HLA-DPA1
Pertussis	7	0.028681117	C3, MAPK11, NOS2, ITGB2, SERPING1, C4BPB, TLR4
Antigen processing and presentation	7	0.030362124	HLA-DMA, HLA-DRB5, CD8B, CTSL, HLA-G, HLA-DRB1, HLA-DPA1
Viral myocarditis	6	0.03143227	HLA-DMA, HLA-DRB5, ITGB2, HLA-G, HLA-DRB1, HLA-DPA1
Steroid hormone biosynthesis	6	0.033559443	SULT1E1, HSD3B1, CYP1A2, HSD17B2, UGT2A3, UGT2B7
Chemical carcinogenesis	7	0.037726826	ALDH3A1, ALDH3B2, CYP1A2, UGT2A3, UGT2B7, SULT2A1, SULT1A2
Cytokine-cytokine receptor interaction	14	0.039269633	CCR1, CNTFR, IL1R1, TGFB3, CD70, TNFRSF18, IL18, CXCL1, LIFR, CXCL3, CXCL2, BMP2, TNFRSF8, CCL26
Type I diabetes mellitus	5	0.040550025	HLA-DMA, HLA-DRB5, HLA-G, HLA-DRB1, HLA-DPA1
TGF-beta signaling pathway	7	0.046146221	CDKN2B, BMP2, LEFTY1, TGFB3, BAMBI, LTBP1, SMAD7

Table S2 Gene set enrichment analysis (GSEA) analysis

REACTOME	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX LEADING EDGE	
REACTOME_INITIAL_TRIGGERING_OF_COMPLEMENT	2	2 0.6419	2 1.70868	8 0	. 1	0.245	598 tags=23%, list=3%, s	ignal=23%
REACTOME_METABOLISM_OF_ANG/OTENSINOGEN_TO_ANG/OTENSINS	1	7 0.8120	9 1.695	i 0	1	0.276	1185 tags=41%, list=6%, s	ignal=44%
REACTOME_COMPLEMENT_CASCADE	5	7 0.5968	1 1.58431	0	1	0.598	634 tags=23%, list=3%, s	ignal=23%
REACTOME_FORMATION_OF_FIBRIN_CLOT_CLOTTING_CASCADE	3	9 0.6717	1 1.55176	6 0	1	0.656	3520 tags=49%, list=18%,	signal=59%
REACTOME_CARGO_CONCENTRATION_IN_THE_ER	3	3 0.4956	6 1.54555	5 0	1	0.66	3390 tags=30%, list=17%,	signal=36%
REACTOME_PRE_NOTCH_PROCESSING_N_GOLGI	1	8 0.5610	3 1.48347	′ 0	1	0.862	3316 tags=33%, list=17%,	signal=40%
REACTOME_PRE_NOTCH_EXPRESSION_AND_PROCESSING	4	9 0.3949	9 1.4524	۱ O	1	0.934	3629 tags=31%, list=18%,	signal=37%
REACTOME_PHASE_4_RESTING_MEMBRANE_POTENTIAL	1	9 0.6928	4 1.44015	i 0	1	0.949	2692 tags=37%, list=13%,	signal=43%
REACTOME_CHAPERONE_MEDIATED_AUTOPHAGY	2	2 0.4973	2 1.43005	i 0	1	0.957	2897 tags=27%, list=14%,	signal=32%
REACTOME_LDL_CLEARANCE	1	9 0.4572	5 1.42817	0	1	0.957	2155 tags=32%, list=11%,	signal=35%
REACTOME_FGFR2_LIGAND_BINDING_AND_ACTIVATION	2	0 0.5707	7 1.42695	i 0	1	0.957	4295 tags=30%, list=21%,	signal=38%
REACTOME_COLLAGEN_BIOSYNTHESIS_AND_MODIFYING_ENZYMES	e	7 0.6397	3 1.41771	0	1	0.957	2696 tags=42%, list=13%,	signal=48%
REACTOME_SERVITONIN_NEUROTRANSMITTER_RELEASE_CYCLE	1	8 0.6842	6 1.38208	8 0	1	0.993	3207 tags=44%, list=16%,	signal=53%
EACTOME_COLLAGEN_FORMATION	9	0 0.5887	8 1.37823	8 0	1	0.995	4117 tags=47%, list=21%,	signal=58%
EACTOME_NUCLEOTIDE_CATABOLISM	3	5 0.5159	6 1.31387	0	1	1	4283 tags=34%, list=21%,	signal=44%
REACTOME_ARACHIDONIC_ACID_METABOLISM	5	8 0.5417	3 1.42879	0.0055351	1	0.957	3751 tags=45%, list=19%,	signal=55%
REACTOME_BINDING_AND_UPTAKE_OF_LIGANDS_BY_SCAVENGER_RECEPTORS	4	2 0.5503	8 1.31846	0.0075472	1	1	5741 tags=57%, list=29%,	signal=80%
REACTOME_SYNAPTIC_ADHESION_LIKE_MOLECULES	2	1 0.575	4 1.41736	0.0083857	1	0.957	3565 tags=33%, list=18%,	signal=41%
REACTOME_REGULATION_OF_NSULN_LIKE_GROWTH_FACTOR_IGF_TRANSPORT_AND_UF	² 12	3 0.5125	6 1.40765	0.0092937	1	0.98	5077 tags=42%, list=25%,	signal=56%
REACTOME_PHOSPHOLPASE_C_MEDIATED_CASCADE_FGFR2	1	8 0.631	9 1.49385	0.010453	1	0.836	4295 tags=33%, list=21%,	signal=42%
REACTOME_SURFACTANT_METABOLISM	3	0 0.567	8 1.42954	0.0112613	1	0.957	5140 tags=40%, list=26%,	signal=54%
EACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_	12	8 0.5437	8 1.34093	0.012024	1	1	4976 tags=32%, list=25%,	signal=42%
EACTOME_PHASE_L_FUNCTIONALIZATION_OF_COMPOUNDS	10	2 0.4022	3 1.3521	0.0136187	0.991342	2 1	3751 tags=29%, list=19%,	signal=36%
EACTOME_PURINERGIC_SIGNALING_N_LEISHMANIASIS_INFECTION	2	6 0.4867	6 1.37069	0.0152964	1	1	2812 tags=27%, list=14%,	signal=31%
EACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION	30	1 0.4964	7 1.3201	0.0197842	1	1	4282 tags=43%, list=21%,	signal=53%
EACTOME_BIOLOGICAL_OXIDATIONS	21	5 0.3767	4 1.26751	0.0205607	1	1	5664 tags=37%, list=28%,	signal=51%
EACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE	12	8 0.4534	5 1.39602	0.0241449	1	0.993	3973 tags=20%, list=20%,	signal=25%
EACTOME_FGFR2_MUTANT_RECEPTOR_ACTIVATION	3	3 0.4251	5 1.36033	0.0290102	1	1	4362 tags=30%, list=22%,	signal=39%
EACTOME_TNFS_BIND_THEIR_PHYSIOLOGICAL_RECEPTORS	2	9 0.5181	3 1.35804	0.0300885	0.987446	6 1	3364 tags=38%, list=17%,	signal=46%
EACTOME_SYNTHESIS_OF_LEUKOTRIENES_LT_AND_EOXINS_EX	2	1 0.6991	8 1.53915	0.0311284	1	0.687	3751 tags=52%, list=19%,	signal=64%
EACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS	8	5 0.5690	7 1.31316	0.0318949	0.989723	3 1	2703 tags=41%, list=13%,	signal=47%