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Supplementary Information

Table S1: Penalties used in the optimization approach of MetaboPAC

Penalty Description Reasoning
Mass balance Calculate the sum of squared 

residuals between the inferred 
change in absolute 
concentration over time 
calculated from the raw 
relative abundance data (i.e. 
the change in relative 
abundance over time divided 
by the predicted response 
factor) and the inferred 
change in absolute 
concentration over time 
calculated from the 
stoichiometry of the system 
and inferred fluxes (i.e. 
Equation 1 in the Methods).

If the change in absolute 
concentration over time is 
very different between the 
two calculations (i.e. the sum 
of squared residuals is much 
greater than zero), the 
predicted response factors 
have failed to produce 
inferred absolute 
concentration and flux 
profiles that are consistent 
with mass balances in the 
system.

Maximum concentration If the inferred absolute 
concentration for any 
metabolite is above 5 mM or 
50 mM for synthetic and 
biological systems, 
respectively, add a penalty 
equal to the maximum value 
of all inferred concentrations.

It is reasonable to assume that 
for many metabolites, there 
can be a general a priori 
estimate for a maximum 
concentration that is 
biologically feasible, either 
due to limits in production or 
cell toxicity. Here, we use a 
single threshold for all 
metabolites, but imposing 
individual maximum 
thresholds could lead to better 
response factor predictions. 
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Correlation for mass action 
reaction with a single 
substrate and no other 
regulation

Calculate the correlation 
between the substrate 
metabolite and inferred target 
flux. The correlation is 
expected to be positive 
(because metabolites induce 
mass action reactions); the 
penalty for each reaction with 
no regulation other than mass 
action equals the calculated 
correlation minus one. 

If a reaction is only controlled 
by a single metabolite, the 
reaction rate should increase 
as the concentration of the 
metabolite increases 
(assuming the reaction 
kinetics do not exhibit any 
behavior similar to substrate 
inhibition).

Curve fit for mass action 
reaction with a single 
substrate and no other 
regulation

Calculate the fit of a second-
order polynomial to the 
substrate metabolite and 
target flux data. The penalty 
for each reaction equals one 
minus the adjusted R2 of the 
fit (adjusted for the number of 
parameters).

A second-order polynomial 
should fit the data reasonably 
well if a reaction is controlled 
by a single metabolite (e.g. if 
the data is well-modeled by a 
Michaelis-Menten saturation 
curve).

Fit to BST kinetic equations For each reaction in a system, 
fit the inferred absolute 
concentration and flux data to 
a BST equation [1] 
representing the reaction rate. 
Calculate the sum of squared 
residuals of the fit.

A generic BST kinetic 
equation should fit reasonably 
well to correctly inferred 
absolute concentration and 
flux data.

Deviation from steady-state 
flux distribution*

For each flux in a system, 
calculate the summed 
percentage deviation from 
steady state for the last 25% 
of timepoints. In this work, 
the flux distribution of the 
last timepoint was assumed to 
be the steady-state 
distribution due to challenges 
in applying flux balance 
analysis in synthetic or 
smaller pathways. 

Most biological systems 
eventually converge to a 
steady state, and these flux 
distribution can be reasonably 
estimated using flux balance 
analysis without much a 
priori knowledge. 

*The steady-state penalty was not applied to the determined system, which does not reach 
steady-state due to the nature of the pathway. 



Figure S1. Synthetic systems tested with MetaboPAC. We built one determined synthetic 
system and one underdetermined synthetic system with regulation using Michaelis-Menten 
kinetics for each reaction. xi represents the ith metabolite and vj represents the jth flux. In both 
systems, flux v1 is assumed to be constant and known. 



Figure S2. Biological pathways used in this study (A) central carbon metabolism in E. coli 
(adapted from Fig. 2 in [2]) (B) glycolysis pathway in S. cerevisiae (adapted from Fig. 2 in 
[3]).



Figure S3. Percentage of response factors predicted by the combined approach without 
assuming a determined system in the S. cerevisiae and E. coli systems. MetaboPAC 
compared to random response factors and response factors of 500 for the A. S. cerevisiae and B. 
E. coli systems using error ranges of log2(1.1), log2(1.3), and log2(1.5). Instead of assuming 
sufficient known kinetics to yield a determined system such that fluxes can be estimated 
accurately, the Moore-Penrose pseudoinverse approach was used to estimate individual fluxes. 
Lines represent the mean percent of predicted response factors within the error ranges for each 
method. Error bars represent the standard error of the mean (n = 50 for different sets of true 
response factors and different sets of known kinetic equations for 20-80% known kinetics, n=5 
for different sets of true response factors for 0% and 100%). Asterisks denote when the 
combined approach performed significantly better at predicting response factors than both of the 
other two methods (two-sample t-test with α = 0.05). The combined approach outperforms the 
two baseline comparators when more than 40% kinetic equations are known. 

Figure S4. Kinetic equation approach performance on noiseless data at 100% known 
kinetics with no discretization error. To assess the impact of discretization error on the two 
biological systems, the change in concentrations is derived directly from in silico simulated 
fluxes rather than from calculating differences in concentrations at two adjacent timepoints (i.e., 
finite different approximations). The change in metabolite concentration is found by multiplying 
fluxes by the stoichiometric matrix and then multiplying by true response factors to yield change 
in relative abundance with no discretization error. All response factors can be predicted 
accurately in this case. 



Figure S5. Performance of the optimization approach on noiseless data for synthetic 
models. The optimization approach is compared to random response factors and response factors 
of 500 for the A. determined and B. underdetermined with regulation synthetic models using 
error ranges of log2(1.1), log2(1.3), and log2(1.5). Lines represent the mean percent of predicted 
response factors within the error ranges for each method. Error bars represent the standard error 
of the mean (n = 50 for different sets of true response factors and known kinetic equation terms 
for 20-80% known kinetics, n=5 for different sets of true response factors for 0% and 100%). 
Asterisks denote when the optimization approach performed significantly better at predicting 
response factors than both of the other two methods (two-sample t-test with α = 0.05).



Figure S6. Performance of the optimization approach on noiseless data for biological 
models. The optimization approach is compared to random response factors and response factors 
of 500 for the A. S. cerevisiae and B. E. coli models using error ranges of log2(1.1), log2(1.3), 
and log2(1.5). Lines represent the mean percent of predicted response factors within the error 
ranges for each method. Error bars represent the standard error of the mean (n = 50 for different 
sets of true response factors and different sets of known kinetic equation terms for 20-80% 
known kinetics, n=5 for different sets of true response factors for 0% and 100%). Asterisks 
denote when the optimization approach performed significantly better at predicting response 
factors than both of the other two methods (two-sample t-test with α = 0.05).



Figure S7. Percent of response factors predicted by the kinetic equation and optimization 
steps of MetaboPAC within each log2 error range for the synthetic models when using 
noiseless data. The kinetic equation approach often outperforms the optimization approach in 
predicting response factors within log2(1.1) and log2(1.3) error range. The performance of the 
optimization and kinetic equation approaches generally increases with increasing percentage of 
known kinetic equations. Error bars represent the standard error of the mean (n = 50 for different 
sets of true response factors and different sets of known kinetic equations for 20-80% known 
kinetics, n=5 for different sets of true response factors for 0% and 100%. Number of response 
factors predicted by kinetic equation or optimization approach varies based on the percentage of 
kinetic equations known (Figure S8)).

Figure S8. Percentage of response factors predicted overall by the kinetic equation and 
optimization steps of MetaboPAC in the synthetic models. As the percentage of known 
kinetic equations increases, it is more likely for response factors to be solvable using the kinetic 
equation approach. Error bars represent the standard error of the mean (n = 50 for different sets 
of true response factors and different sets of known kinetic equations for 20-80% known 
kinetics, n=5 for different sets of true response factors for 0% and 100%).



Figure S9. Percent of response factors predicted by the kinetic equation and optimization 
steps of MetaboPAC within each log2 error range for the S. cerevisiae and E. coli systems 
when using noiseless data. There is a substantial improvement in performance for the kinetic 
equation approach at a higher percentage of known kinetic equations, but not for the 
optimization approach as more kinetic equations are known. Error bars represent the standard 
error of the mean (n = 50 for different sets of true response factors and different sets of known 
kinetic equations for 20-80% known kinetics, n=5 for different sets of true response factors for 
0% and 100%. Number of response factors predicted by kinetic equation or optimization 
approach varies based on the percentage of kinetic equations known (Figure S10)).

Figure S10. Percentage of response factors predicted overall by the kinetic equation and 
optimization steps of MetaboPAC in the S. cerevisiae and E. coli systems. As the percentage 
of known kinetic equations increases, it is more likely for response factors to be solved using the 
kinetic equation approach. Error bars represent the standard error of the mean (n = 50 for 



different sets of true response factors and different sets of known kinetic equations for 20-80% 
known kinetics, n=5 for different sets of true response factors for 0% and 100%).

Figure S11. MetaboPAC performance on various conditions of noisy data for the 
Determined model. MetaboPAC is compared to random response factors and response factors 
of 500 for the determined model using error ranges of log2(1.1), log2(1.3), log2(1.5) on data 
with different sampling frequencies (nT = 50 or 15) and noise added (CoV = 0.05 or 0.15). Lines 
represent the mean percent of predicted response factors within the error ranges for each method. 
Error bars represent the standard error of the mean (n=9 for 3 different sets of true response 
factors and 3 replicates of noisy data for 0% and 100% known kinetic equations, n = 27 for 3 
different sets of true response factors, 3 different subsets of known kinetic equations, and 3 
replicates of noisy data for the rest). Asterisks denote when MetaboPAC performed significantly 
better at predicting response factors than both of the other two methods (two-sample t-test with α 
= 0.05).



Figure S12. MetaboPAC performance on various conditions of noisy data for the 
Underdetermined with Regulation model. MetaboPAC is compared to random response 
factors and response factors of 500 for the underdetermined with regulation model using error 
ranges of log2(1.1), log2(1.3), log2(1.5) on data with different sampling frequencies (nT = 50 or 
15) and noise added (CoV = 0.05 or 0.15). Lines represent the mean percent of predicted 
response factors within the error ranges for each method. Error bars represent the standard error 
of the mean (n=9 for 3 different sets of true response factors and 3 replicates of noisy data for 
0% and 100% known kinetic equations, n = 27 for 3 different sets of true response factors, 3 
different subsets of known kinetic equations, and 3 replicates of noisy data for the rest). 
Asterisks denote when MetaboPAC performed significantly better at predicting response factors 
than both of the other two methods (two-sample t-test with α = 0.05).



 
Figure S13. Percent of response factors predicted by the kinetic equation and optimization 
steps of MetaboPAC within each log2 error range for the determined system when using 
noisy data. The kinetic equation approach generally predicted more accurate response factors 
than the optimization approach. Error bars represent the standard error of the mean (number of 
samples varies based on the percentage of kinetic equations known (Figure S8)).

 

 
Figure S14. Percent of response factors predicted by the kinetic equation and optimization 
approaches within each log2 error range for the underdetermined system with regulation 



when using noisy data. At a lower sampling frequency, there is a decrease in performance of the 
kinetic equation approach, which is coupled to compromised performance of the optimization 
approach, causing an overall decrease of prediction accuracy for response factors at the middle 
known kinetics. Error bars represent the standard error of the mean (number of samples varies 
based on the percentage of kinetic equations known (Figure S8)).

Figure S15. MetaboPAC performance on various conditions of noisy data for the S. 
cerevisiae model. MetaboPAC is compared to random response factors and response factors of 
500 for the S. cerevisiae model using error ranges of log2(1.1), log2(1.3), log2(1.5) on data with 
different sampling frequencies (nT = 50 or 15) and noise added (CoV = 0.05 or 0.15). Lines 
represent the mean percent of predicted response factors within the error ranges for each method. 
Error bars represent the standard error of the mean (n=9 for 3 different sets of true response 
factors and 3 replicates of noisy data for 0% and 100% known kinetic equations, n = 27 for 3 
different sets of true response factors, 3 different subsets of known kinetic equations, and 3 
replicates of noisy data for the rest). Asterisks denote when MetaboPAC performed significantly 
better at predicting response factors than both of the other two methods (two-sample t-test with α 
= 0.05).



Figure S16. MetaboPAC performance on various conditions of noisy data for the E. coli 
model. MetaboPAC is compared to random response factors and response factors of 500 for the 
E. coli model using error ranges of log2(1.1), log2(1.3), log2(1.5) on data with different 
sampling frequencies (nT = 50 or 15) and noise added (CoV = 0.05 or 0.15). Lines represent the 
mean percent of predicted response factors within the error ranges for each method. Error bars 
represent the standard error of the mean (n=9 for 3 different sets of true response factors and 3 
replicates of noisy data for 0% and 100% known kinetic equations, n = 27 for 3 different sets of 
true response factors, 3 different subsets of known kinetic equations, and 3 replicates of noisy 
data for the rest). Asterisks denote when MetaboPAC performed significantly better at predicting 
response factors than both of the other two methods (two-sample t-test with α = 0.05).



 Figure S17. Percent of response factors predicted by the kinetic equation and optimization 
approaches within each log2 error range for the S. cerevisiae system when using noisy data. 
As more kinetic equations are known, the optimization approach predicts more response factors 
within the log2(1.3) error range and the log2(1.5) error range, but there is no significant 
improvement in the performance of the kinetic equation approach. Error bars represent the 
standard error of the mean (number of samples varies based on the percentage of kinetic 
equations known (Figure S10)).

 Figure S18. Percent of response factors predicted by the kinetic equation and optimization 
approaches within each log2 error range for the E. coli system when using noisy data. The 
two approaches have similar performance. There is a slight improvement in the performance of 
the kinetic equation approach as more kinetic equations are known, but no significant 
improvement in the performance of the optimization approach. Error bars represent the standard 
error of the mean (number of samples varies based on the percentage of kinetic equations known 
(Figure S10)).



Figure S19. MetaboPAC performance on the synthetic models with data with more noise. 
In addition to CoV=0.05 and CoV=0.15 as in the main text, CoV=0.25 is used to assess the 
robustness of MetaboPAC to higher experimental noise. As discussed in the main text, the 
performance of MetaboPAC on the determined pathway is sensitive to the addition of noise 
while that on the underdetermined with regulation pathway seems to be robust to noise. 



Figure S20. MetaboPAC performance on various conditions of noisy data with 10% 
missing values for the synthetic models. To assess the robustness of our approach to missing 
values in data, we removed 10% of the data using a realistic representation of missing value 
distribution in metabolomics datasets, where the level of missingness is assumed to be different 
for different metabolites, and that metabolites with lower abundance are more prone to have 
missing values. Missing data were removed with parameter values of I = 70%, II = 70%, and III 
= 15%; details about these parameters of missingness are described in [4]. The missing values 
were then imputed using the modified k-nearest neighbors approach in [4] and MetaboPAC was 
performed on the resulting relative abundance metabolomics data. Compared to Figure 5, there is 
a slight decrease in performance across all noise conditions, but MetaboPAC was still 
significantly better than both the random and 500 response factors approaches when 100% 
kinetic equation terms are known. 

Supplementary Methods

Accurate flux estimation assumption for underdetermined system 



To obtain a unique and accurate flux estimation from time-series metabolomics data, the 
metabolic pathway needs to be determined (having the same number of metabolites and 
reactions). In the case of underdetermined systems, some kinetic equations are assumed to be 
known such that the systems will be determined. The known kinetic equations for reactions are 
selected such that the number of remaining reactions with unknown kinetic equations is equal to 
the number of metabolites and that the stoichiometric equations are not linearly dependent. The 
percentage of additional known kinetic equations in figure legends then refers to any known 
kinetic equations in addition to those assumed to be known to ensure the systems are determined. 

Penalty weight optimization

The penalty terms in Table S1 are incorporated into the optimization approach as soft constraints 
such that the sum of these terms is minimized. Since each penalty term may be of a different 
order of magnitude, different penalties may have varying impacts on the optimization problem in 
each system if used in an unweighted fashion. To account for this, we added a penalty weight 
vector and multiplied that by the penalty terms such that all penalties except the mass balance 
penalty are brought to the same order of magnitude. To determine the weight vector for each 
system, 10,000 random sets of response factors were sampled, and the minimum value of each 
penalty was found and used as the benchmark for the weight vector. Since the mass balance 
penalty is considered to be a centrally important constraint, it is given a larger penalty weight 
(100x) than the others. 
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