Electronic Supporting Information

Monolayer *H*-MoS₂ with High Ion Mobility as A Promising Anode for Rubidium (Cesium)-Ion Batteries

Baichuan Lu^a, Xiaochi Liu^{a,b*}, Jifeng Qu^{a*} and Zesheng Li^c

^{*a*} Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.

^b Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China

^c Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China

E-mail: <u>liuxc@apm.ac.cn</u> E-mail: <u>qujf@nim.ac.cn</u>

Table S1. The diffusion barrier (eV) and diffusion constant (*T*=300 K) of MX₂ and graphene for Rb and Cs.

		R	lb		Cs				
Monolayer	Patł	nway-I	Pathway-II		Patł	nway-I	Pathway-II		
	Barrier Constant		Barrier	Constant	Barrier	Constant	Barrier	Constant	
H-MoS ₂	0.037	2.39E-01	0.243	8.28E-05	0.036	2.48E-01	0.203	3.89E-04	
H-MoSe ₂	0.039	2.21E-01	0.237	1.04E-04	0.039	2.21E-01	0.196	5.10E-04	
H-MoTe ₂	0.042	1.97E-01	0.175	1.15E-03	0.042	1.97E-01	0.134	5.61E-03	
H-WS ₂	0.052	1.34E-01	0.253	5.62E-05	0.050	1.45E-01	0.221	1.94E-04	
H-WSe ₂	0.052	1.34E-01	0.241	8.94E-05	0.051	1.39E-01	0.222	1.86E-04	
H-WTe ₂	0.054	1.24E-01	0.239	9.66E-05	0.055	1.19E-01	0.211	2.85E-04	
T'- MoS ₂	0.122	8.92E-03	0.450	2.76E-08	0.091	2.96E-02	0.411	1.25E-07	
Graphene	0.043	1.90E-01	0.048	1.56E-01	0.033	2.79E-01	0.037	2.39E-01	

Table S2. Structural information obtained by PBE-D3 functional for graphene and monolayer MX_2 (M=Mo, W; X=S, Se and Te) systems. The Lattice Constants *a*, *b* and *h* (height).

Monolayer	<i>a</i> (<i>b</i>)/Å	$h/{ m \AA}$
H-MoS ₂	3.167	3.134
H-MoSe ₂	3.310	3.339
H-MoTe ₂	3.479	3.655
H-WS ₂	3.185	3.134
H-WSe ₂	3.331	3.336
H-WTe ₂	3.558	3.606
T(T')-MoS ₂	3.209	3.141
Graphene	2.468	/

Table S3. The binding energy (eV) of M-top, X-top and hollow sites of MX₂ to Rb and Cs.

MVa		Rb@MX ₂		$Cs@MX_2$				
IVIA2	M-top	X-top	Hollow	M-top	X-top	Hollow		
H-MoS ₂	-0.96	-0.72	-0.94	-1.17	-0.97	-1.14		
H-MoSe ₂	-0.72	-0.46	-0.67	-0.94	-0.74	-0.9		
H-MoTe ₂	-0.52	-0.33	-0.48	-0.74	-0.6	-0.7		
H-WS ₂	-0.64	-0.39	-0.59	-0.85	-0.64	-0.81		
H-WSe ₂	-0.47	-0.23	-0.42	-0.68	-0.47	-0.64		
H-WTe ₂	-0.53	-0.29	-0.48	-0.74	-0.53	-0.69		
T'- MoS ₂	-2.49	-2.60	-3.29	-2.53	-2.85	-2.95		

Table S4. The Rb and Cs ion charges (e) were calculated by Bader charge scheme. The diffusion energy barrier (eV) from pathway-I of *H*-MX₂ and graphene for Rb and Cs. The *e*_S represents the charge on stable site. The *e*_T represents the charge on transition site. The Δe_d represents the charge difference between *e*_T and *e*_S ($\Delta e_d = e_T - e_S$).

H MY2		Rb@A	I-MX ₂		Cs@H-MX2				
	Barrier	es	ет	Δe_d	Barrier	es	ет	Δe_d	
H-MoS ₂	0.037	0.8788	0.8819	0.0031	0.036	0.8767	0.8810	0.0043	
H-MoSe ₂	0.039	0.8549	0.8597	0.0048	0.039	0.8557	0.8618	0.0061	
H-MoTe ₂	0.042	0.8292	0.8368	0.0076	0.042	0.8259	0.8349	0.0090	
H-WS ₂	0.052	0.8748	0.8796	0.0048	0.050	0.8757	0.8851	0.0094	
H-WSe ₂	0.052	0.8542	0.8597	0.0055	0.051	0.8535	0.8649	0.0114	
H-WTe ₂	0.054	0.8359	0.8452	0.0093	0.055	0.8273	0.8417	0.0144	

Table S5. The average binding energy (eV) of different layers of adsorption Rb on *H*-MX₂ and graphene. The corresponding storage density (atom/Å²), theoretical capacity (mAh/g) and open circuit voltage (V) of the optimal adsorption system. The * indicating the amount of Rb adsorption.

Materials	@1L (*=4)	@2L (*=8)	Eb (*Rb @3L (*=12)	$\frac{@M_{9}X_{18}}{@4L}$ (*=16)) @5L (*=20)	@6L (*=24)	Storage Density	Theoretical Capacity	OCV
H-MoS ₂	-0.48	-0.24	-0.10	-0.10	-0.03	0.07	0.23	372.05	0.96
H-MoSe ₂	-0.41	-0.18	-0.07	-0.01	0.05	/	0.18	187.72	0.72
H-MoTe ₂	-0.48	-0.27	0.05	/	/	/	0.08	67.84	0.52
H-WS ₂	-0.38	-0.15	0.01	/	/	/	0.10	96.08	0.64
H-WSe ₂	-0.34	-0.10	0.02	/	/	/	0.09	69.72	0.47
H-WTe ₂	-0.46	-0.21	0.00	/	/	/	0.08	54.26	0.53
Matariala	$E_b(*Rb@C_{32})$						Storage	Theoretical	OCV
Materials		(<i>v</i> 1L		@2L		Density	capacity	UCV
Graphene	*=1	*=2	*=3	*=4	*=2	*=4	0.01	60.70	0.01
	-0.01	0.01	0.02	0.02	0.05	0.02	0.01	09.79	0.01

Table S6. The average binding energy (eV) of different layers of adsorption Cs on *H*-MX₂ and graphene. The corresponding Storage density (atom/Å²), theoretical capacity (mAh/g) and open circuit voltage (V) of the optimal adsorption system. The * indicating the amount of Cs adsorption.

		Eb(*Cs	(a)M9X18)				
Materials	@1L	@2L	@3L	@4L	Storage Density	Theoretical Capacity	OCV	
	(*=4)	(*=8)	(*=12)	(*=16)				
H-MoS ₂	-0.43	-0.20	-0.07	0.00	0.14	223.23	1.17	
H-MoSe ₂	-0.40	-0.16	-0.08	0.01	0.13	140.79	0.94	
H-MoTe ₂	-0.38	-0.18	0.01	/	0.08	67.84	0.74	
H-WS ₂	-0.32	-0.10	0.01	/	0.10	96.08	0.85	
H-WSe ₂	-0.28	-0.08	0.04	/	0.09	69.72	0.68	
H-WTe ₂	-0.58	-0.28	0.00	/	0.08	54.26	0.74	
		E _b (*0	$Cs@C_{32}$					
Materials		@1L		@2L	Storage Density	Theoretical Capacity	OCV	
Granhana	*=1	*=2	*=3	*=2	0.02	120.50	0.10	
Graphene	-0.19	-0.05	0.02	0.03	0.02	159.59	0.19	

Table S7. The charge (e) of $Rb@H-MoS_2$ and $Cs@H-MoS_2$ obtained from Bader charge transfer. The (+) and (-) numbers indicate the positive charge (lost electrons) and the negative charge (get electrons) on each layer of $Rb@H-MoS_2$ and $Cs@H-MoS_2$, respectively. And the (-) bold number indicates the negative charge (get electrons) carried on the $H-MoS_2$ of $Rb@H-MoS_2$ and $Cs@H-MoS_2$. The structure and layer naming can be seen in Figure 2a in the main text. The * indicating the amount of Rb/Cs adsorption.

System		*]	Rb@H-Mo		*Cs@H-MoS ₂			
	*=4	*=8	*=12	*=16	*=20	*=4	*=8	*=12
	@1L	@2L	@3L	@4L	@5L	@1L	@2L	@3L
Up-L3					+0.199			
Up-L2			+0.096	+0.084	-0.242			+0.150
Up-L1	+1.366	+1.433	+1.389	+1.406	+1.520	+1.399	+1.456	+1.261
MoS ₂	-1.366	-2.868	-3.106	-2.981	-2.957	-1.399	-2.906	-2.792
Down-L1		+1.435	+1.621	+1.413	+1.388		+1.450	+1.380
Down-L2				+0.078	+0.092			

Table S8. The lattice constant *a*, *b* and *h* (Å), volume of *H*-MoS₂ (Å³), change rate (%) and theoretical capacitance (mAh/g) of pure *H*-MoS₂ monolayer, *Rb@*H*-MoS₂ and *Cs@*H*-MoS₂. The * indicating the amount of Rb/Cs adsorption.

*Rb(Cs)@H- MoS ₂	Lattice Constant <i>a</i> (<i>b</i>)	Lattice Constant Change Rate	h (H-MoS ₂)	Volume (H-MoS ₂)	Volume Change Rate	Theoretical Capacitance
Pure-MoS ₂	9.50	/	3.13	244.95	/	/
1 Rb	9.63	1.37%	3.11	249.77	1.97%	18.60
4 Rb	9.64	1.47%	3.11	250.29	2.18%	74.41
8 Rb	9.67	1.79%	3.14	253.88	3.64%	148.42
12 Rb	9.95	4.74%	2.99	256.36	4.66%	223.23
16 Rb	9.95	4.74%	2.99	257.22	4.66%	297.64
20 Rb	9.94	4.63%	3.00	253.96	4.80%	372.05
1 Cs	9.63	1.37%	3.11	249.61	1.90%	18.60
4 Cs	9.67	1.79%	3.10	250.80	2.39%	74.41
8 Cs	9.74	2.53%	3.11	255.10	4.14%	148.42
12 Cs	9.95	4.74%	3.01	254.22	5.36%	223.23

Table S9. The binding energy (eV) of C-top, C-bright and Hollow sites of graphene to Li, Rb and Cs.

Alkali@Graphene	C-top	C-bridge	Hollow
Li	0.11	0.11	-0.19
Rb	0.05	0.05	-0.01
Cs	-0.14	-0.15	-0.19

		Pure-		*	Rb@MX	,			*Cs@	∂MX_2	
Systems		MX ₂	*=1	*=4	*=8	*=12	*=16	*=1	*=4	*=8	*=12
	<i>a</i> (<i>b</i>)	9.93	10.01	10.01	10.04	10.28	10.27	10.02	10.05	10.11	10.14
	h	3.34	3.33	3.34	3.29	3.37	3.37	3.32	3.32	3.33	3.35
MoSe ₂	V	285.21	288.96	289.82	287.20	308.41	307.81	288.66	290.39	294.76	298.29
	Change rate	/	1.31%	1.62%	0.70%	8.14%	7.93%	1.21%	1.82%	3.35%	4.59%
	a(b)	10.44	10.73	10.73	10.89	/	/	10.73	10.75	10.90	/
M.T.	h	3.66	3.58	3.58	3.77	/	/	3.58	3.58	3.78	/
Mo Ie ₂	V	345.46	356.94	356.94	387.18	/	/	356.94	358.28	388.92	/
	Change rate	/	3.32%	3.32%	12.08%	/	/	3.32%	3.71%	12.58%	/
	<i>a</i> (<i>b</i>)	9.56	9.61	9.59	9.58	/	/	9.62	9.64	9.67	/
WC	h	3.13	3.12	3.12	3.13	/	/	3.12	3.10	3.16	/
\mathbf{WS}_2	V	247.73	249.53	248.49	248.77	/	/	250.05	249.48	255.89	/
	Change rate	/	0.73%	0.31%	0.42%	/	/	0.94%	0.71%	3.30%	/
	a(b)	9.99	10.00	9.97	9.97	/	/	10.00	10.01	10.03	/
WC.	h	3.34	3.35	3.35	3.35	/	/	3.35	3.35	3.32	/
w Se ₂	V	288.67	290.11	288.37	288.37	/	/	290.11	290.69	289.24	/
	Change rate	/	0.50%	-0.10%	-0.10%	/	/	0.50%	0.70%	0.20%	/
	a(b)	10.67	10.76	10.74	10.79	/	/	10.76	10.77	10.75	/
	h	3.61	3.60	3.60	4.21	/	/	3.59	3.59	4.22	/
w le ₂	V	355.92	360.95	359.61	424.47	/	/	359.95	360.61	422.33	/
	Change rate	/	1.41%	1.04%	19.26%	/	/	1.13%	1.32%	18.66%	/

Table S10. The lattice constant *a*, *b* and *h* (Å), volume of *H*-MX₂ (Å³) and volume change rate (%)of pure MX₂ monolayer, *Rb@ MoS₂ and *Cs@ MoS₂. The * indicating the amount of Rb/Cs adsorption.

Figure S1 The (a) top and (b) side views of the atomic structure of the $6 \times 6 \times 1$ graphene supercell. The (c) top and (d) side views of the atomic structure of the $4 \times 4 \times 1$ monolayer *T*-MoS₂ supercell. The (e) top and (f) side views of the atomic structure of the $4 \times 4 \times 1$ monolayer *T*'-MoS₂ supercell.

Figure S2 (a) The two universal diffusion pathways (pathway-I along zigzag and pathways-II along armchair direction) for Rb and Cs ions diffusing on T'-MoS₂ monolayer. Diffusion energy curves of (b) Rb and (c) Cs ions on T'-MoS₂ monolayer.

Figure S3 (a) The two universal diffusion pathways (pathway-I along zigzag and pathways-II along armchair direction) for Li, Rb and Cs ions diffusing on graphene. Diffusion energy curves of (b) Li, (c) Rb and (d) Cs ions on graphene.

Figure S4. Difference charge density of Rb at the stable adsorption site (M-top) of monolayer (a) *H*-MoS₂, (b) *H*-MoSe₂, (c) *H*-MoTe₂, (d) *H*-WS₂, (e) *H*-WSe₂, (f) *H*-WTe₂. Difference charge density of Cs at the stable adsorption site (M-top) of monolayer (g) *H*-MoS₂, (h) *H*-MoSe₂, (i) *H*-MoTe₂, (j) *H*-WS₂, (k) *H*-WSe₂ and (l) *H*-WTe₂. Orange and green colors with the isosurface value of 0.001 e/A³, represent charge accumulation and depletion, respectively.

Figure S5. The diffusion energy curves of two universal pathways (pathway-I along zigzag and pathways-II along armchair direction) for (a) Rb@*H*-MoS₂, (b) Rb@*H*-MoS_{e2}, (c) Rb@*H*-MoT_{e2}, (d) Rb@*H*-WS₂, (e) Rb@*H*-WS_{e2}, (f) Rb@*H*-WT_{e2}, (g) Cs@*H*-MoS₂, (h) Cs@*H*-MoS_{e2}, (i) Cs@*H*-MoT_{e2}, (j) Cs@*H*-WS₂, (k) Cs@*H*-WS_{e2} and (l) Cs@*H*-WT_{e2}.

Figure S6 Schematic diagram of the maximum adsorption capacity of $3 \times 3 \times 1$ *H*-MX₂ supercell and $4 \times 4 \times 1$ graphene supercell for (a) Rb and (b) Cs.