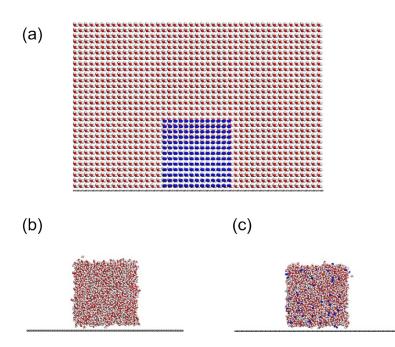
Supplementary Information

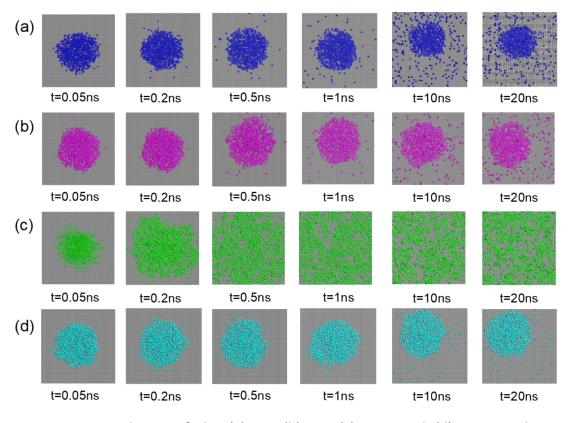
Unraveling the Effects of Gas Species and Surface Wettability on Morphology of Interfacial Nanobubbles

Kadi Hu^a, Liang Luo^b, Xiaoming Sun^{a,b}, and Hui Li*^a

a. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemistry Technology, Beijing 100029, PR China.


b. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029, PR China.

*E-mail: hli@mail.buct.edu.cn


Contents

Supporting Figures	S1
--------------------	-----------

Part I Supporting Figures

Fig. S1 (a) Initial structure of the H_2 nanobubble system, which contains 57375 H_2O molecules, 2197 H_2 molecules, and 7524 C atoms. (b) Initial state of the pure water droplet, which contains 5000 H_2O molecules. (c) Initial state of the water droplet mixed with H_2 , which contains 5000 H_2O molecules and 150 H_2 molecules.

Fig. S2 Time evolution of the (a) H_2 , (b) O_2 , (c) CO_2 , and (d) N_2 nanocluster morphologies on atomistic flat surfaces (plan views).

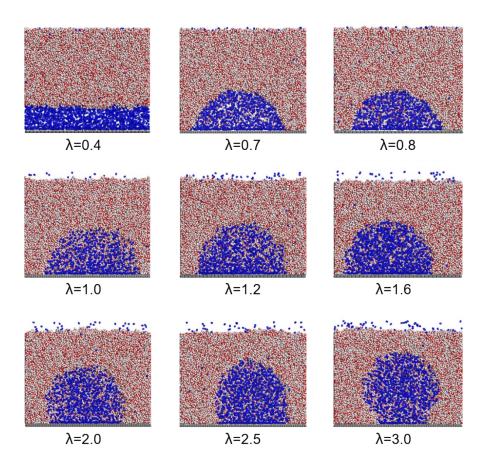
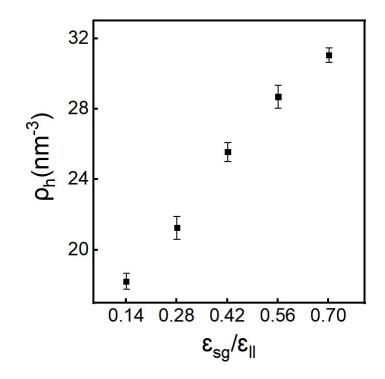



Fig. S3 Snapshots of the nanobubbles on surfaces (side views) with different values of λ , which from small to large denotes the wettability changing from hydrophobic to hydrophilic.

Fig. S4 Relationship between the density of first H₂ layer and the interaction parameter $\epsilon_{sg}/\epsilon_{II}$. Each $\epsilon_{sg}/\epsilon_{II}$ is corresponding to the surfaces of different wettability from λ =0.5 to λ =2.5.

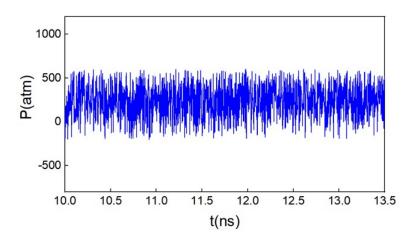


Fig. S5 Time evolution of the internal pressure of surface nanobubble when R_{cur} = 5.21

nm (λ =1.0). The pressure fluctuates a lot as the simulation goes.

Part II Supporting tables

Table S1 Interaction parameters between atoms.¹ C_G: the atoms of graphene; O_W: the O atom of H₂O; H_W: the H atoms of H₂O; H_H: the atoms of H₂; O₀: the atoms of O₂; O_c: O atom of CO₂; C_c: C atom of CO₂. N: N atom of N₂.

	C _G	O_W	H_{W}	H_{H}	Oo	O _C	C _C	N
<i>E</i> (kcal/mol)	0.086	0.155	0	0.022	0.103	0.103	0.183	0.074
$\sigma(\text{\AA})$	3.400	3.169	0	2.683	3.006	3.006	2.937	3.292
Charge(e)	0	-0.8476	0.4238	0	0	-0.3256	0.6512	0

The water molecules are treated by the SPC/E model. The Lennard-Jones potential

$$E = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$
 with a cutoff of 12.0 Å is employed for the Van der Waals

interaction. The interaction parameters between different types of atoms are

calculated through the Lorentz-Berthelot combining rules ($arepsilon_{ij}=\sqrt{arepsilon_{ii}arepsilon_{jj}}$,

$$\sigma_{ij} = \frac{\sigma_{ii+} + \sigma_{jj}}{2}.$$

References

¹ J. P. Bouanich, Site-site Lennard-Jones Potential Parameters for N $_2$, O $_2$, H $_2$, CO and CO $_2$, J.

Quant. Spectrosc. RA., 1992, 47,243-250.