Supporting information

Predicting the photon energy of quasi-2D lead halide perovskites from the precursor composition through machine learning

Wei Wang^{#a,b}, Yueqiao Li^{#a,b}, Ang Zou^{a,b}, Haochen Shi^{a,b}, Xiaofeng Huang^{a,b}, Yaoyao Li^{a,b}, Dong Wei^c, Bo Qiao^{a,b}, Suling Zhao^{a,b}, Zheng Xu^{a,b}, Dandan Song^{*a,b}

a Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China

b Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China

c College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China

[#]These authors contributed equally: Wei Wang, Yueqiao Li.

Address correspondence to E-mail: ddsong@bjtu.edu.cn

Table S1 The compositions and the experimental photon energy values of the perovskites from literature.

The column named L represents the name of the organic spacer cation. The columns named MA, FA, Cs, Cl, Br are the ions ratios under the conditions the sum of MA, FA and Cs equals to 1 and the sum of Cl and Br equals 1. P2L and P2A represent the molar ratio of Pb²⁺ to organic spacer cation (abbreviated as P2L) and of Pb²⁺ to organic cation (abbreviated as P2A) in the precursor solution, respectively. The photon energy was calculated from the emission peak wavelength (most of them are electroluminescence wavelengths).

ID	La	MA	FA	Cs	Cl	Br	P2L	P2A	Photon	Ref
									energy	
1	PEA	0	0	1	0	1	2.5	0.77	2.40	1
2	PEA	0	0	1	0	1	2.5	0.63	2.39	1
3	PEA	0	0	1	0	1	2.5	0.53	2.40	1

4	PEA	0	0	1	0	1	2.5	0.45	2.40	1
5	BA	0	0	1	0	1	2.5	0.83	2.43	2
6	PEA	0.2	0	0.8	0	1	2	1.33	2.38	3
7	PEA	0	0	1	0	1	1.5	1.5	2.59	4
8	PEA	0	1	0	0	1	1	2	2.34	5
9	PEA	0	1	0	0	1	2.5	1.25	2.32	5
10	PEA	0	0	1	0	1	2.5	1	2.45	6
11	PEA	0	0	1	0	1	2.5	0.91	2.40	7
12	PEA	0	0	1	0	1	2	1	2.40	8
13	BA	0	0	1	0.58	0.42	1.387	0.86	2.66	9
14	BA	0	0	1	0.16	0.84	1.387	0.86	2.55	9
15	BA	0	0	1	0	1	1.387	0.86	2.45	9
16	PEA	0.5	0.5	0	0	1	2	1	2.38	10
17	PEA	0	0	1	0	1	2	0.97	2.42	11
18	PEA	0	0	1	0	1	0.91	1.1	2.62	12
19	PEA	0	0	1	0	1	0.83	1.25	2.68	12
20	PEA	0	1	0	0	1	2	1.33	2.36	13
21	РМА	0	1	0	0	1	1.5	1.5	2.32	14
22	PEA _{0.67} NPA _{0.33}	0	0	1	0	1	1	1.5	2.56	15
23	PA	0	0	1	0	1	1	1	2.55	16
24	PBA	0	1	0	0	1	2.22	0.83	2.31	17
25	PBA0.87PA0.13	0	1	0	0	1	1.92	0.83	2.32	17
26	PBA _{0.76} PA _{0.24}	0	1	0	0	1	1.69	0.83	2.32	17
27	PBA _{0.62} PA _{0.38}	0	1	0	0	1	1.37	0.83	2.37	17
28	PEA	0	1	0	0	1	1.75	1.4	2.34	18
29	BA	0	0	1	0	1	2	1	2.43	19
30	BA	0	0	1	0	1	1.25	1	2.45	19
31	BA	0	0	1	0	1	1	1	2.45	19
32	P-PDA	0	0	1	0	1	1	2	2.68	20

33	P-PDA	0	0	1	0	1	1.25	1.67	2.67	20
34	P-PDA	0	0	1	0	1	1.5	1.5	2.60	20
35	P-PDA	0	0	1	0	1	2	1.33	2.56	20
36	P-PDA	0	0	1	0	1	2.5	1.25	2.50	20
37	P-PDA _{0.875} PEA _{0.125}	0	0	1	0	1	1.25	1.67	2.67	20
38	P-PDA _{0.75} PEA _{0.25}	0	0	1	0	1	1.25	1.67	2.67	20
39	P-PDA _{0.5} PEA _{0.5}	0	0	1	0	1	1.25	1.67	2.63	20
40	P-PDA _{0.75} PEA _{0.25}	0	0	1	0	1	1.25	1.67	2.67	20
41	1-NMA	0	1	0	0	1	2	1	2.38	21
42	PEA	0	1	0	0	1	2	1	2.37	21
43	PBA	0	0.3	0.7	0	1	0.91	1	2.57	22
44	PA _{0.15} PEA _{0.01}	0	0	1	0	1	0.97	1.03	2.54	23
45	PA0.15PEA0.011	0	0	1	0	1	0.96	1.03	2.54	23
46	PEA	1	0	0	0	1	2	1	2.44	24
47	PEA	0.7	0.3	0	0	1	2	1	2.40	24
48	PEA	0.3	0.7	0	0	1	2	1	2.38	24
49	PEA	1	0	0	0	1	2	1.33	2.44	25
50	PEA	1	0	0	0	1	1.33	1.33	2.36	25
51	PEA	1	0	0	0	1	1	1.33	2.37	25
52	PEA	1	0	0	0	1	0.8	1.33	2.44	25
53	PEA	1	0	0	0	1	0.67	1.33	2.44	25
54	PEA	1	0	0	0	1	0.8	1	2.40	25
55	PEA	0	1	0	0	1	1.5	1.5	2.33	26
56	PEA	0	0	1	0	1	1.67	1	2.44	27
57	BA	0	1	0	0	1	1	2	2.34	28
58	BA	0	1	0	0	1	1.5	1.5	2.28	28
59	BA	0	1	0	0	1	2.5	1.25	2.28	28
60	BA	1	0	0	0	1	1.5	1.5	2.35	29
61	PEA	1	0	0	0	1	1.5	1.5	2.41	29

62	PEA	0	0	1	0	1	1	1	2.52	30
63	PBA	0	0	1	0.3	0.7	1.39	0.8	2.53	31
64	PBA	0	0	1	0.4	0.6	1.39	0.8	2.58	31
65	PBA	0	0	1	0.5	0.5	1.39	0.8	2.62	31
66	PBA	0	0	1	0	1	1.39	0.8	2.45	31
67	PBA	0	0	1	0.05	0.95	1.39	0.8	2.47	31
68	PBA	0	0	1	0.1	0.9	1.39	0.8	2.48	31
69	PBA	0	0	1	0.15	0.85	1.39	0.8	2.49	31
70	PBA	0	0	1	0.2	0.8	1.39	0.8	2.51	31
71	PBA	0	0	1	0.25	0.75	1.39	0.8	2.52	31
72	PBA	0	0	1	0.35	0.65	1.39	0.8	2.56	31
73	PBA	0	0	1	0.45	0.55	1.39	0.8	2.61	31
74	PEA	0	0	1	0.3	0.7	2.5	1	2.56	32
75	PEA	0	0	1	0.3	0.7	1.67	1	2.56	32
76	PEA	0	0	1	0.3	0.7	1.25	1	2.57	32
77	PEA	0	0	1	0.3	0.7	1	1	2.58	32
78	PEA	0	0	1	0.3	0.7	0.83	1	2.59	32
79	PEA	0	0	1	0.25	0.75	1	1	2.60	33
80	PEA _{0.17} PA _{0.83}	0	0	1	0	1	1	1.2	2.55	34
81	PEA	0	0	1	0.1	0.9	1.25	1	2.59	35
82	PBA	0	0	1	0	1	0.6	3	2.84	36
83	PBA	0	0	1	0	1	0.6	1.98	2.67	36
84	PBA	0	0	1	0	1	0.67	1.67	2.55	36
85	PBA	0	0	1	0	1	0.75	1.5	2.52	36
86	PEA	0.2	0	0.8	0.1	0.9	1.5	1.5	2.42	37
87	PEA	0.2	0	0.8	0.2	0.8	1.5	1.5	2.48	37
88	PEA	0.2	0	0.8	0.3	0.7	1.5	1.5	2.48	37
89	PEA	0.2	0	0.8	0	1	1.5	1.5	2.54	37
90	p-F-PEA	0	0.11	0.89	0.5	0.5	2	0.52	2.64	38

91	PEA	0.17	0	0.83	0	1	1.25	1.67	2.42	39
92	PEA _{0.4} IPA _{0.1}	0.17	0	0.83	0	1	1.11	1.67	2.43	39
93	PEA _{0.4} IPA _{0.2}	0.17	0	0.83	0	1	1	1.67	2.45	39
94	PEA _{0.4} IPA _{0.4}	0.17	0	0.83	0	1	0.83	1.67	2.51	39
95	PEA _{0.4} IPA _{0.6}	0.17	0	0.83	0	1	0.71	1.67	2.62	39
96	PEA _{0.4} IPA _{0.4}	0.25	0	0.75	0	1	0.83	1.67	2.53	39
97	PEA _{0.4} IPA _{0.4}	0.33	0	0.67	0	1	0.83	1.67	2.62	39
98	PEA	0	0	1	0	1	1.5	1.15	2.44	40
99	PEA	0	0	1	0	1	1.5	0.93	2.46	40
100	PEA	0	0	1	0	1	1.5	0.83	2.50	40
101	EA	1	0	0	0	1	1.18	1.54	2.56	41
102	EA	1	0	0	0	1	1.33	1.33	2.41	41
103	POEA	1	0	0	0	1	2.5	0.33	2.46	42
104	POEA	1	0	0	0	1	1.67	0.33	2.38	42
105	POEA	1	0	0	0	1	1.25	0.33	2.44	42
106	POEA	1	0	0	0	1	0.83	0.33	2.68	42

a: Abbreviations of the large spacer cations: phenylethylamine (PEA), butylamine (BA), N-(2-Bromoethyl)-1,3-propanediamine (NPA), Propylamine (PA), 4-Phenylbutylamine (PBA), 1,2-Bis(bromomethyl)benzene (P-PDA), 1-naphthylmethylamine (1-NMA), 4-Fluorophenethylamine (p-F-PEA), iso-propylammonium (IPA), 2-phenoxyethylamine (POEA).

Table S2 Summary of the data listed in Table S1

	XLogP3	FA ratio	Cs ratio	Br ratio	P2L	P2A	Photon energy
Min.	0.620	0.0000	0.0000	0.4200	0.600	0.33	2.280
Median	2.370	0.0000	1.0000	1.0000	1.390	1.00	2.465
Mean	2.432	0.1595	0.6619	0.9392	1.474	1.17	2.487
Max.	3.370	1.0000	1.0000	1.0000	2.500	3.00	2.840

Table S3 Parameter settings for quasi-2D perovskite precursor compositions

Features P2L P2A XLogP3 Cs	FA	Br
----------------------------	----	----

Settings	0.6-1.6,	1.4-2.4,	1.6-4.0, step	0.75-1.0,	=1-(Cs	0-1, step
Settings	step 0.1	step 0.2	0.3	step 0.05	ratio)	0.1

Reference

- G. Jin, D. Zhang, P. Pang, Z. Ye, T. Liu, G. Xing, J. Chen and D. Ma, *J. Mater. Chem. C*, 2021, 9, 916-924.
- L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang, S. Wang, M. You, C. Zhang, T. Zhang, S. V. Kershaw, W. Zheng, Y. Yang, Q. Lin, M. Yuan, A. L. Rogach and X. Yang, *Nat. Commun.*, 2021, 12, 1246.
- L. Na Quan, D. Ma, Y. Zhao, O. Voznyy, H. Yuan, E. Bladt, J. Pan, F. P. Garcia de Arquer, R. Sabatini, Z. Piontkowski, A. H. Emwas, P. Todorovic, R. Quintero-Bermudez, G. Walters, J. Z. Fan, M. Liu, H. Tan, M. I. Saidaminov, L. Gao, Y. Li, D. H. Anjum, N. Wei, J. Tang, D. W. McCamant, M. B. J. Roeffaers, S. Bals, J. Hofkens, O. M. Bakr, Z. H. Lu and E. H. Sargent, *Nat. Commun.*, 2020, **11**, 170.
- Y.-K. Wang, D. Ma, F. Yuan, K. Singh, J. M. Pina, A. Johnston, Y. Dong, C. Zhou, B. Chen, B. Sun, H. Ebe, J. Fan, M.-J. Sun, Y. Gao, Z.-H. Lu, O. Voznyy, L.-S. Liao and E. H. Sargent, *Nat. Commun.*, 2020, 11, 3674.
- 5. X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin and J. You, *Nat. Commun.*, 2018, **9**, 570.
- R. Wang, Y. Zhang, X.-J. Ma, Y.-H. Deng, J.-W. Shi, X.-C. Wang, Y.-L. Jia, Q. Xu, Z.-H. Xiong and C.-H. Gao, *J. Mater. Chem. C*, 2020, 8, 9845-9853.
- Q.-W. Liu, S. Yuan, S.-Q. Sun, W. Luo, Y.-J. Zhang, L.-S. Liao and M.-K. Fung, J. Mater. Chem. C, 2019, 7, 4344-4349.
- 8. S. Yuan, B. Han, T. Fang, Q. Shan and J. Song, ACS Appl. Electron. Mater., 2020, 2, 3530-3537.
- 9. P. Vashishtha, M. Ng, S. B. Shivarudraiah and J. E. Halpert, Chem. Mater., 2018, 31, 83-89.
- P. Xia, Y. Lu, Y. Li, W. Zhang, W. Shen, J. Qian, Y. Wu, W. Zhu, H. Yu, L. Liu, L. Deng and S. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 39720-39729.
- B. Han, S. Yuan, T. Fang, F. Zhang, Z. Shi and J. Song, ACS Appl. Mater. Interfaces, 2020, 12, 14224-14232.
- 12. M. Worku, Q. He, L. J. Xu, J. Hong, R. X. Yang, L. Z. Tan and B. Ma, *ACS Appl. Mater. Interfaces*, 2020, **12**, 45056-45063.
- L. Lei, D. Seyitliyev, S. Stuard, J. Mendes, Q. Dong, X. Fu, Y. A. Chen, S. He, X. Yi, L. Zhu,
 C. H. Chang, H. Ade, K. Gundogdu and F. So, *Adv. Mater.*, 2020, **32**, 1906571.
- S. Lee, C. H. Jang, T. L. Nguyen, S. H. Kim, K. M. Lee, K. Chang, S. S. Choi, S. K. Kwak, H. Y. Woo and M. H. Song, *Adv. Mater.*, 2019, **31**, e1900067.
- Y. Jin, Z. K. Wang, S. Yuan, Q. Wang, C. Qin, K. L. Wang, C. Dong, M. Li, Y. Liu and L. S. Liao, *Adv. Funct. Mater.*, 2019, **30**, 1908339.
- Z. Ren, X. Xiao, R. Ma, H. Lin, K. Wang, X. W. Sun and W. C. H. Choy, *Adv. Funct. Mater.*, 2019, 29, 1905339.
- F. Meng, X. Liu, Y. Chen, X. Cai, M. Li, T. Shi, Z. Chen, D. Chen, H. L. Yip, C. Ramanan, P. W. M. Blom and S. J. Su, *Adv. Funct. Mater.*, 2020, **30**, 1910167.
- 18. T. Cheng, C. Qin, S. Watanabe, T. Matsushima and C. Adachi, Adv. Funct. Mater., 2020, 30, 9.

- Z. Wang, F. Wang, W. Sun, R. Ni, S. Hu, J. Liu, B. Zhang, A. Alsaed, T. Hayat and Z. a. Tan, *Adv. Funct. Mater.*, 2018, 28, 10.
- S. Yuan, Z. K. Wang, L. X. Xiao, C. F. Zhang, S. Y. Yang, B. B. Chen, H. T. Ge, Q. S. Tian, Y. Jin and L. S. Liao, *Adv. Mater.*, 2019, **31**, e1904319.
- C. Qin, T. Matsushima, W. J. Potscavage, A. S. D. Sandanayaka, M. R. Leyden, F. Bencheikh, K. Goushi, F. Mathevet, B. Heinrich, G. Yumoto, Y. Kanemitsu and C. Adachi, *Nat. Photonics*, 2019, 14, 70-75.
- Y. Liu, J. Cui, K. Du, H. Tian, Z. He, Q. Zhou, Z. Yang, Y. Deng, D. Chen, X. Zuo, Y. Ren, L. Wang, H. Zhu, B. Zhao, D. Di, J. Wang, R. H. Friend and Y. Jin, *Nat. Photonics*, 2019, 13, 760-764.
- Z. Ren, L. Li, J. Yu, R. Ma, X. Xiao, R. Chen, K. Wang, X. W. Sun, W.-J. Yin and W. C. H. Choy, ACS Energy Lett., 2020, 5, 2569-2579.
- P. Xia, Y. Lu, H. Yu, Y. Li, W. Zhu, X. Xu, W. Zhang, J. Qian, W. Shen, L. Liu, L. Deng and S. Chen, *Nanoscale*, 2019, 11, 20847-20856.
- 25. Y. Han, S. Park, C. Kim, M. Lee and I. Hwang, Nanoscale, 2019, 11, 3546-3556.
- X. Yang, Z. Chu, J. Meng, Z. Yin, X. Zhang, J. Deng and J. You, *J. Phys. Chem. Lett.*, 2019, 10, 2892-2897.
- J. H. Warby, B. Wenger, A. J. Ramadan, R. D. J. Oliver, H. C. Sansom, A. R. Marshall and H. J. Snaith, ACS Nano, 2020, 14, 8855-8865.
- S. Lee, D. B. Kim, I. Hamilton, M. Daboczi, Y. S. Nam, B. R. Lee, B. Zhao, C. H. Jang, R. H. Friend, J. S. Kim and M. H. Song, *Adv. Sci. (Weinheim, Ger.)*, 2018, 5, 1801350.
- 29. H. Tsai, C. Liu, E. Kinigstein, M. Li, S. Tretiak, M. Cotlet, X. Ma, X. Zhang and W. Nie, *Adv. Sci. (Weinheim, Ger.)*, 2020, **7**, 1903202.
- S. Kang, R. Jillella, J. Jeong, Y. I. Park, Y. J. Pu and J. Park, *ACS Appl. Mater. Interfaces*, 2020, 12, 51756-51765.
- K.-H. Wang, Y. Peng, J. Ge, S. Jiang, B.-S. Zhu, J. Yao, Y.-C. Yin, J.-N. Yang, Q. Zhang and H.-B. Yao, ACS Photonics, 2018, 6, 667-676.
- 32. Z. Li, Z. Chen, Y. Yang, Q. Xue, H. L. Yip and Y. Cao, Nat. Commun., 2019, 10, 1027.
- Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng, J. Zhao, X. Xiao, P. Rudd, A. Moran, Y. Yan and J. Huang, *Nat. Commun.*, 2019, 10, 5633.
- Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun, C. C. S. Chan, S. Ding, K. Wang, R. Chen, K. S. Wong, X. Lu, W. J. Yin and W. C. H. Choy, *Adv. Mater.*, 2020, 33, 10.
- P. Pang, G. Jin, C. Liang, B. Wang, W. Xiang, D. Zhang, J. Xu, W. Hong, Z. Xiao, L. Wang, G. Xing, J. Chen and D. Ma, *Acs Nano*, 2020, 14, 11420-11430.
- N. Yantara, N. F. Jamaludin, B. Febriansyah, D. Giovanni, A. Bruno, C. Soci, T. C. Sum, S. Mhaisalkar and N. Mathews, *ACS Energy Lett.*, 2020, 5, 1593-1600.
- D. Ma, P. Todorovic, S. Meshkat, M. I. Saidaminov, Y. K. Wang, B. Chen, P. Li, B. Scheffel, R. Quintero-Bermudez, J. Z. Fan, Y. Dong, B. Sun, C. Xu, C. Zhou, Y. Hou, X. Li, Y. Kang, O. Voznyy, Z. H. Lu, D. Ban and E. H. Sargent, J. Am. Chem. Soc., 2020, 142, 5126-5134.
- Y. Shen, K. C. Shen, Y. Q. Li, M. L. Guo, J. K. Wang, Y. C. Ye, F. M. Xie, H. Ren, X. Y. Gao,
 F. Song and J. X. Tang, *Adv. Funct. Mater.*, 2021, **31**, 9.
- J. Xing, Y. Zhao, M. Askerka, L. N. Quan, X. Gong, W. Zhao, J. Zhao, H. Tan, G. Long, L. Gao,
 Z. Yang, O. Voznyy, J. Tang, Z. H. Lu, Q. Xiong and E. H. Sargent, *Nat. Commun.*, 2018, 9, 3541.

- 40. Y. Shang, G. Li, W. Liu and Z. Ning, Adv. Funct. Mater., 2018, 28.
- 41. Q. Wang, J. Ren, X. F. Peng, X. X. Ji and X. H. Yang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 29901-29906.
- Z. M. Chen, C. Y. Zhang, X. F. Jiang, M. Y. Liu, R. X. Xia, T. T. Shi, D. C. Chen, Q. F. Xue, Y. J. Zhao, S. J. Su, H. L. Yip and Y. Cao, *Adv. Mater.*, 2017, 29, 8.