Supplementary Information for

Electrostatic Control of Excitonic Photoluminescence from Both A and B Excitons in Monolayer Molybdenum Disulfide

Yuchun Liu, Tianci Shen, Shuangyi Linghu, Ruilin Zhu and Fuxing Gu*

S1. CVD Synthesis of monolayer MoS²

Monolayer $MoS₂$ on the $Si/SiO₂$ substrate was grown by using CVD technique in the a furnace with double temperature zones. As shown in Fig. S1(a), two alumina boats with sulfur powder (S, \geq 99.5%) and molybdenum (VI) oxide (MoO₃, \geq 99%) powder were placed upstream and downstream of the two-zone furnace, respectively. Several SiO₂/Si substrates (dimensions of 10 mm \times 50 mm \times 1 mm) were placed faced-down on the $MoO₃$ boat. The temperatures of two-zone furnace were controlled by heatingset system program. High-purity argon gas (Ar) was introduced into the quartz tube with a flow rate of $100~200$ sccm during the growth process. The growth temperature was set to 850~870 °C and growth time was about 10~20 minutes for monolayer $MoS₂$ in our growth system at an nearly atmospheric pressure. The monolayer $MoS₂$ flakes with different quality can be achieved through changing the Mo:S ratio of precursor and the gas flow rate. For the growth of S-rich monolayer MoS_2 , 200 mg sulfur powder and 5 mg $MoO₃$ powder were used as precursors with an Ar flow rate of 100 \sim 150 sccm. For the growth of Mo-rich monolayer MoS₂, 200 mg sulfur powder and 10 mg MoO₃ powder were used as precursors, and the Ar gas flow rate was 150 sccm. Fig. S1(b−c) shows the optical microscopy images of the CVD-grown S-rich and Mo-rich monolayer $MoS₂$ on $SiO₂/Si$ substrates.

Fig. S1 (a) Setup schematic diagram for the monolayer MoS₂ growth by CVD method in a two-zone furnace; (b−c) Optical microscopy image of the CVD-grown S-rich and Mo-rich monolayer MoS₂ on SiO₂/Si substrates.

S2. Morphology and surface potential of S-rich and Mo-rich monolayer MoS²

The morphology, surface potential mapping and line profiles for the monolayer $MoS₂$ samples with Au electrode on $SiO₂/Si$ substrate are shown in Fig. S2. The contact potential difference (CPD) of $MoS₂$ was measured with the Scanning Kelvin Probe in air ambient. In principle, the measured CPD is the difference in work function between the sample surface and the probe: $eV_{CPD} = \Phi_{tip} - \Phi_{sample}$, where ϕ_{tip} is the known work function of reference tip and ϕ_{sample} is the work function of the sample. To investigate the surface potential difference of different $MoS₂$ on $Si/SiO₂$ substrate, Au films with a thickness of ~40 nm were used as references. The measured surface potential difference between the S-rich MoS_2 monolayer and Au was \sim -44 mV, while that between Mo-rich MoS_2 and Au was ~52 mV. It indicted that the S-rich MoS_2 exhibited a higher work function and lower electron density than that of the Mo-rich $MoS₂$.

Fig. S2 Morphology, surface potential mapping and line profiles for the monolayer $MoS₂$ samples with Au electrode on SiO₂/Si substrate: (a-c) S-rich and (c-d) Mo-rich MoS₂.

It should be noted that the laser power intensity was $\leq 10^3$ W/cm² for PL and Raman spectra measurements. Since the collection time for measurement of each spectra is very short (<30 seconds), there no obvious structure defects induced by the laser irradiation in the monolayer $MoS₂$. Only when the laser excitation last for a long time, additional structure defects can be produced¹. As shown in Fig. S2 (e), the red dash circles represented the region of continuous laser irradiation for 30 minutes on $MoS₂$ with laser power intensity of 2.4×10^3 W/cm² (three times as the power intensity for PL measurements). The continuous laser irradiation led to an increase of 40~50 mV in the V_{CPD} for the Mo-rich MoS₂, which inferred an increase of defect density and a decrease of work function.

S3. Statistical PL intensity ratio for the S-rich and Mo-rich monolayer MoS²

The statistical data were obtained from more than 10 tests of PL spectra for the S-rich and Mo-rich $MoS₂$ samples, which are similar to that in Fig. 3 and Fig. 4. The estimated statistical value of PL intensity ratio for both the S-rich and Mo-rich $MoS₂$ with the error bars are shown in Fig. S3.

Fig. S3 Statistical PL intensity ratio for the S-rich and Mo-rich MoS₂: (a) I_{exciton}/I_{trion}, (b) I_B/I_A

S4. Statistical PL intensity ratio for the S-rich and Mo-rich monolayer MoS²

The S-rich $MoS₂$ sample on $SiO₂/Si$ was doped by spin-coating PEDOT:PSS and was dried naturally in air. After doped by PEDOT:PSS, the sulfur vacancies can be healed spontaneously by the sulfur adatom clusters through a PSS-induced hydrogenation². The PL emission were measured under the same condition as that of the S-rich and Mo-rich monolayer $MoS₂$. Fig. S4 shows the PL spectra and integrated PL intensity of different excitons (A^0 , A^- and B) at different V_g . After PEDOT:PSS spin coating on the CVD-grown MoS₂, the trion PL of doped MoS₂ showed a weak dependence on V_g , similar to the observation of a PL less sensitive to V_g in the reported works.

Fig. S4 Gate-dependent PL properties of the S-rich monolayer $MoS₂$ sample after PEDOT:PSS doping: (a-b) PL spectra and integrated PL intensity of A^0 , A^- , and B excitons; (c) $I_{\text{exciton}}/I_{\text{trion}}$ ratio versus V_g , and calculated electron density versus *Vg*.

References

- 1 H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong and Y. H. Lee, *ACS Nano*, 2016, **10**, 5230–5236.
- 2 X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang, J. Du, F. Li, S. Zhang, J. Xiao, B. Liu, Y. Ou, X. Liu, L. Gu and Y. Zhang, *Nature Commun*., 2017, **8**, 15881.