Electronic Supplementary Information

Aerolysin Nanopore-Based Identification of Proteinogenic Amino Acids Using a Bipolar Peptide Probe

Yaxian Ge^a, Mengjie Cui^a, Qiuqi Zhang^b, Ying Wang^a, * and Dongmei Xi^a, *

- ^a Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Linyi 276005, P. R. China
- ^b The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P. R. China

* Correspondence author:

dongmxi@126.com (Prof. Dr. Dongmei Xi) wangying@lyu.edu.cn (Prof. Dr. Ying Wang)

Electronic Supplementary Information

Table S1. Sequences and properties of the peptides used in this work.

Figure S1. Comparison of the blocking current, blocking duration, and characteristic signals of bipolar probes of different lengths.

Figure S2. Duration time vs applied voltage for the bipolar probes W and H.

Figure S3. *I*/*I*⁰ distribution of 20 amino acids.

Figure S4. Dependence of the blocking current on the volume of amino acid X.

Name	Sequence $(N' \rightarrow C')$	Mw (Da)	Net charge (pH=7.5)	Manufacturer
А	DDDDARRRR	1330.36	1.0	GL Biochem
L	DDDDLRRRRR	1372.44	1.0	GL Biochem
D	DDDDDRRRRR	1374.37	0.0	GL Biochem
Е	DDDDERRRRR	1388.40	0.0	GL Biochem
F	DDDDFRRRRR	1406.46	1.0	GL Biochem
G	DDDDGRRRRR	1316.34	1.0	GL Biochem
Н	DDDDHRRRRR	1396.42	1.0	GL Biochem
Ι	DDDDIRRRR	1372.44	1.0	GL Biochem
М	DDDDMRRRRR	1390.48	1.0	GL Biochem
С	DDDDCRRRRR	1362.43	1.0	GL Biochem
N	DDDDNRRRR	1373.39	1.0	GL Biochem
Т	DDDDTRRRRR	1360.39	1.0	GL Biochem
Р	DDDDPRRRRR	1356.40	1.0	GL Biochem
Q	DDDDQRRRRR	1387.41	1.0	GL Biochem
Y	DDDDYRRRR	1422.46	1.0	GL Biochem
S	DDDDSRRRR	1346.36	1.0	GL Biochem
V	DDDDVRRRRR	1358.42	1.0	GL Biochem
W	DDDDWRRRRR	1445.5	1.0	GL Biochem
К	DDDDKRRRRR	1387.46	2.0	GL Biochem
R	DDDDRRRRRR	1415.47	2.0	GL Biochem
G-	DDDDDDGRRRRR	1546.51	-1.0	GL Biochem
F-	DDDDDDFRRRRR	1636.63	-1.0	GL Biochem
P-	DDDDDDPRRRRR	1586.57	-1.0	GL Biochem
I-	DDDDDDIRRRRR	1602.62	-1.0	GL Biochem
Q-	DDDDDDQRRRRR	1617.59	-1.0	GL Biochem
A6	DDDDDDARRRRRRR	2029.09	2.0	GL Biochem

Table S1. Sequences and properties of the peptides used in this work.

C6	DDDDDDCRRRRRRR	2061.16	1.9	GL Biochem			
S6	DDDDDDSRRRRRRR	2045.09	2.0	GL Biochem			
A8	DDDDDDDDARRRRR	2571.63	2.0	GL Biochem			
	RRRR						
C8	DDDDDDDDCRRRRRR	2603.70	1.9	GL Biochem			
	RRRR						
S8	DDDDDDDDDSRRRRR	2587.63	20	GL Biochem			
	RRRRR						
*The net charge of examined peptides was calculated from							
http://www.novopro.cn/tools/calc_peptide_property.html							

Figure S1. Comparison of the blocking current, blocking duration, and characteristic signals of bipolar probes of different lengths. (a) Comparison of blocking currents of three amino acids A, C, and S in different peptide-chain carriers. (Left, short peptide probe (D_4XR_5), middle, intermediate peptide probe (D_6XR_8), right, long peptide probe (D_8XR_{10})). (b) Characteristic signals of peptide-chain carriers of D_4XR_5 , D_6XR_8 , and D_8XR_{10} .

Figure S2. Duration time vs applied voltage for the bipolar probes W and H.

Figure S3. *I*/*I*⁰ distribution of 20 proteinogenic amino acids.

Figure S4. Dependence of the blocking current on the volume of amino acid X.