Supplementary Information

Hybrid 1D/2D nanocarbon-based conducting polymer nanocomposites for high-performance wearable electrodes

Dong Young Kim,*^a † Geonhee Lee,^b† Gil Yong Lee,^b Jungpil Kim,^c Kwangu Jeon^d, and Keun Soo Kim*^b

^a Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 111, Biseongnal-ro, Deokjin-gu, Jeonju-si, 54852 Korea.

^b Department of Physics, Graphene Research Institute, and GRI-TPC International Research Centre, Sejong University, Seoul 05006, Republic of Korea.

^c Carbon Materials Application Research Group, Korea Institute of Industrial Technology (KITECH), 222 Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea

^d E-Cube Materials, Palbok-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea

[†] These authors contributed equally.

* Corresponding authors.

E-mail addresses: dykim@kcarbon.or.kr (D. Y. Kim), kskim2676@sejong.ac.kr (K. S. Kim)

Table S1. Parameters of the fabricated conducting nanocomposite film.

		Ratio of materials	Curing conditions	
Materials		in PDMS (SWCNTs / r-GO)	Temp. (°C)	Time (h)
Fabricated nanocomposite conducting film	PDMS-r-GO	0:2	130	2

PDMS-r-GO

Fig. S1 Digital photographs of the PDMS-r-GO sample. The nanocomposite film based on PDMS-r-GO (2 wt.%) shows a small broken structure despite the equal fabrication process.

Fig. S2 Area fraction measurement of darkness on surface of P-SW/r-GO and P-SW/r-GO/f samples using ImageJ analysis. (a) digital photograph and (b) ImageJ of the P-SW/r-GO. (c) digital photograph and (d) ImageJ of the P-SW/r-GO/f. Area fraction values of P-SW/r-GO and P-SW/r-GO/f are indicated 46.5 and 78.2 %, respectively.

Fig. S3 Raman spectra of the pristine SWCNTs. The inset shows RBM region of the SWCNTs.

Fig. S4 Raman spectra in RBM region. (a) PDMS, SWCNTs, and r-GO as raw samples. (b) P-SW, P-SW/r-GO and P-SW/r-GO/f as conducting nanocomposite films.

Fig. S5 FTIR spectra of pristine SWCNTs and r-GO samples.

Materials –		Element (at.%)			
		С	0	Si	Total
Pristine samples	PDMS	49.3	24.0	26.7	100
	SWCNTs	96.0	2.8	1.2	100
	r-GO	93.1	5.1	0.6	100
Fabricated nanocomposite conducting films	P-SW	48.8	24.3	26.9	100
	P-SW/r- GO	51.3	22.9	25.8	100
	P-SW/r- GO/f	46.4	26.5	27.1	100

 Table S2. XPS elemental analysis results for pristine and nanocomposite samples.

Fig. S6 O 1s XPS spectra of the PDMS, SWCNTs, r-GO, and conducting nanocomposite films.

	EWHMa		
Samples	form C 1s spectra		
	(eV)		
PDMS	1.722		
SWCNTs	0.954		
r-GO	1.181		
P-SW	1.720		
P-SW/r-GO	1.455		
P-SW/r-GO/f	1.491		

Table S3. FWHMs of C 1s spectra for pristine and nanocomposite samples.

Fig. S7 Schematic of the fabricated conductive nanocomposite electrode for the (a) P-SW/r-GO and (b) P-SW/r-GO/f samples.

Fig. S8 Electrical resistances of P-SW, P-SW/r-GO and P-SW/r-GO/f as conducting nanocomposite films by four-probe measurement.

Fig. S9 Cross-sectional FE-SEM images of the fabricated conducting nanocomposite films for (a) schematic of cutting composites, (b) P-SW, (c) P-SW/r-GO, and (d) P-SW/r-GO/f. Without charging, distinct cross-sectional images of P-SW/r-GO/f were observed via FE-SEM, owing to improved conductivity.

Fig. S10 Photographic images of the Movesense sensor (MODEL: OP174; diameter 36.6 mm & weight 9.4 g) (a) front and (b) back.

Fig. S11 Self-developed tablet application for Bluetooth ECG monitoring.

Movie S1 Real-time measured ECG signal monitoring using self-developed tablet application.

Carbon Materials	Conducting polymer	Material concentration	Electrical properties	Reference
SWCNTs	SWCNT/hydrogel structure		100–350 Ω/sq.	[1]
MWCNTs	Elastic CNT/PDMS composite	1-20 wt.%	2–7000 Ω/sq.	[2]
Graphene nanoplatelets	Screen printed graphene electrode on textile	-	104 Ω/sq.	[3]
Graphene powder	Electronic tattoos based on silk and graphene	40 wt.%	$96 \pm 8 \ \Omega/sq.$	[4]
Graphene flakes	Electroconductive polymer spray-coated 3D porous graphene	-	13–32 Ω/sq.	[5]
SWCNTs /r-GO	PDMS-based hybrid 1D SWCNTs/2D r-GO	SWCNTs (1 wt.%)/ r-GO (1 wt.%)	4 Ω/sq. (at 4 wire) 15 Ω (at 2 wire)	This work

Table S4. Comparison of the electrical properties of carbon nanomaterial-based composites.

[1] E. P. Gilshteyn, S. Lin, V. A. Kondrashov, D. S. Kopylova, A. P. Tsapenko, A. S. Anisimov, A. John Hart, X. Zhao and A. G. Nasibulin, *ACS Appl. Mater. Interfaces*, 2018, **10**, 28069–28075.

[2] J. H. Kim, J. Y. Hwang, H. R. Hwang, H. S. Kim, J. H. Lee, J. W. Seo, U. S. Shin and S. H. Lee, *Sci. Rep.*, 2018, 8, 1375.

- [3] X. Xu, M. Luo, P. He and J. Yang, J. Phys. D Appl. Phys. 2020, 53, 125402.
- [4] Q. Wang, S. Ling, X. Liang, H. Wang, H. Lu and Y. Zhang, Adv. Funct. Mater. 2019, 29, 1808695.
- [5] M. A. Zahed, P. S. Das, P. Maharjan, S. C. Barman, M. Sharifuzzaman, S. H. Yoon and J. Y. Park, *Carbon*, 2020, 15, 26–36