Supporting Information

Unusual Electronic Transport in (1-x)Cu₂Se-(x)CuInSe₂ Hierarchical Composites

Yixuan Chen^{1,2}, Yinying Zhang³, Ruiming Lu¹, Trevor P. Bailey³, Ctirad Uher³, Pierre F. P. Poudeu^{1,2,*}

- 1) Laboratory for Emerging Energy and Electronic Materials (LE³M), Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- 2) Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- 3) Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA

**Corresponding Author*: Pierre Ferdinand Poudeu Poudeu <u>E-mail</u>: ppoudeup@umich.edu; Fax: +1-734-763-4788

Fig. S1 (a) Phase diagram of Cu_2Se and $CuInSe_2$. (b) The phase diagram is overlaid with stripes representing $(1-x)Cu_2Se/(x)CuInSe_2$ composites with different *x* values.

Fig. S2 Powder X-ray diffraction (PXRD) patterns for all as-prepared $(1-x)Cu_2Se/(x)CuInSe_2$ composites. All diffraction peaks can be indexed with Cu_2Se and $CuInSe_2$ showing high purity of the synthesized composites. The peaks for Cu_2Se quickly diminish since x = 50% (b) and completely disappear at x = 85% (d).

Fig. S3 Representative X-ray diffraction patterns of hot-pressed $(1-x)Cu_2Se/(x)CuInSe_2$ composites. No new phase is observed indicating high purity and good stability of the composites after hot press.

Fig. S4 Differential scanning calorimetry (DSC) curves for all composites. (a) – (d) The major peaks on the heating curves of all composites match well with the phase diagram. The exceptional endothermic peak at ~ 929 K is denoted by *, which suggests the existence of nanoscale CuInSe₂ phase. The dashed line is a guide to the eye, showing the small difference between the micron scale phase transition peak of composites and that of bulk CuInSe₂. The extinction of phase transition peak for Cu₂Se from x = 85% also indicates it crystalizes in nanoscale. (e) – (h) Cooling curves for each sample correspond well with the heating curves with a small supercooling effect. The red and blue curves on all graphs are pure Cu₂Se and CuInSe₂ synthesized for comparison.

Fig. S5 EDS mapping of selected $(1-x)Cu_2Se/(x)CuInSe_2$ composites. (a) x = 15%; (b) x = 20%; (c) x = 45%; (d) x = 48%; (e) x = 50%; (f) x = 90%. The location and relative size of the CuInSe₂ particles in various sample can be clearly tracked following the distribution of In (green) and Se (blue) elements. Likewise, the Cu₂Se phase is also distinguishable following the distribution of Cu (red) element.

Fig. S6 Temperature-dependent electrical conductivity of Cu_2Se and $CuInSe_2$. Cu_2Se behaves like a heavily doped degenerate semiconductor, while $CuInSe_2$ generally shows the characteristic of an intrinsic semiconductor.

Fig. S7 (a) Arrhenius plot of $\ln(\sigma)$ versus 10^{3} /T, giving linear slopes which are used to obtain activation energy of carriers. (b) Variation of the activation energy with the content of CuInSe₂, showing a liner decrease with added Cu₂Se.

Fig. S8 Measured Hall coefficient of selective samples at 300 K. All samples show positive Hall coefficients, indicating that free holes are the dominant carriers in the composites.

Sample	Cu ₂ Se phase			CuInSe ₂ phase		
	Cu (At%)	Se (At%)	In (At%)	Cu (At%)	Se (At%)	In (At%)
0.85CS/0.15CIS	66.45	33.48	0.05	28.05	47.93	23.98
0.52CS/0.48CIS	65.44	34.38	0.17	26.37	49.65	23.98
0.50CS/0.50CIS	65.71	34.23	0.03	26.58	49.51	23.91
0.10CS/0.90CIS	63.45	36.55	0	25.48	50.32	24.18

Table S1 Atomic concentration of each element in both phases of $(1-x)Cu_2Se/(x)CuInSe_2$ composites, determined by EDS point analysis. For each value, at least 10 different points in distinct regions were collected and averaged.