Supporting Information

Unusual Electronic Transport in (1-)Cu2Se-()CuInSe² Hierarchical Composites

Yixuan Chen^{1,2}, Yinying Zhang³, Ruiming Lu¹, Trevor P. Bailey³, Ctirad Uher³, Pierre F. P. Poudeu^{1,2,*}

- *1) Laboratory for Emerging Energy and Electronic Materials (LE³M), Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.*
- *2) Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.*
- *3) Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA*

**Corresponding Author*: Pierre Ferdinand Poudeu Poudeu E-mail: ppoudeup@umich.edu; Fax: +1-734-763-4788

Fig. S1 (a) Phase diagram of Cu₂Se and CuInSe₂. (b) The phase diagram is overlaid with stripes representing $(1-x)Cu_2Se/(x)CuInSe_2$ composites with different *x* values.

Fig. S2 Powder X-ray diffraction (PXRD) patterns for all as-prepared $(1-x)Cu₂Se/(x)CuInSe₂$ composites. All diffraction peaks can be indexed with Cu₂Se and CuInSe₂ showing high purity of the synthesized composites. The peaks for Cu₂Se quickly diminish since $x = 50\%$ (b) and completely disappear at $x = 85%$ (d).

Fig. S3 Representative X-ray diffraction patterns of hot-pressed $(1-x)Cu₂Se/(x)CuInSe₂$ composites. No new phase is observed indicating high purity and good stability of the composites after hot press.

Fig. S4 Differential scanning calorimetry (DSC) curves for all composites. (a) – (d) The major peaks on the heating curves of all composites match well with the phase diagram. The exceptional endothermic peak at \sim 929 K is denoted by *, which suggests the existence of nanoscale CuInSe₂ phase. The dashed line is a guide to the eye, showing the small difference between the micron scale phase transition peak of composites and that of bulk CuInSe₂. The extinction of phase transition peak for Cu₂Se from $x = 85\%$ also indicates it crystalizes in nanoscale. (e) – (h) Cooling curves for each sample correspond well with the heating curves with a small supercooling effect. The red and blue curves on all graphs are pure $Cu₂Se$ and $CuInSe₂$ synthesized for comparison.

Fig. S5 EDS mapping of selected $(1-x)Cu_2Se/(x)CuInSe_2$ composites. (a) $x = 15\%$; (b) $x = 20\%$; (c) $x = 45\%$; (d) $x = 48\%$; (e) $x = 50\%$; (f) $x = 90\%$. The location and relative size of the CuInSe₂ particles in various sample can be clearly tracked following the distribution of In (green) and Se (blue) elements. Likewise, the Cu₂Se phase is also distinguishable following the distribution of Cu (red) element.

Fig. S6 Temperature-dependent electrical conductivity of Cu₂Se and CuInSe₂. Cu₂Se behaves like a heavily doped degenerate semiconductor, while CuInSe₂ generally shows the characteristic of an intrinsic semiconductor.

Fig. S7 (a) Arrhenius plot of $ln(\sigma)$ versus $10^{3}/T$, giving linear slopes which are used to obtain activation energy of carriers. (b) Variation of the activation energy with the content of CuInSe₂, showing a liner decrease with added Cu₂Se.

Fig. S8 Measured Hall coefficient of selective samples at 300 K. All samples show positive Hall coefficients, indicating that free holes are the dominant carriers in the composites.

Table S1 Atomic concentration of each element in both phases of $(1-x)Cu₂Se/(x)CuInSe₂$ composites, determined by EDS point analysis. For each value, at least 10 different points in distinct regions were collected and averaged.