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The definition of coordination number (CN)

The coordination number (CN) of Au-Au bonds was calculated according to the
definition of connectivity proposed by Pei and Ma.[ In detail, for each Au-Au bond,
CNis 1, 0.75, 0.5, 0.25 and 0 when Ra,.a, (i.€. Au-Au distance) ranges from <3.1, (3.1,
3.2],(3.2,3.3], (3.3,3.4], and >3.4 A. Due to the similar atomic radii of Au and Ag atoms,
CN of Au-Ag bond is defined as the same as Au-Au bonds. Meanwhile, the connectivity
of Au-P bond is 1, 0.75, 0.5, 0.25 and 0 when Ra,.p ranges from <2.4, (2.4, 2.45], (2.45,
2.5], (2.5, 2.55], and >2.55 A.
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Table S1. The Hirshfeld charge of metal atoms in AugPg, AugAgPs-2, AugAg,Ps-4, AugAgsPs-2, and AugAg,Ps-1 structures, the charge of Au® and

Au® was highlighted in blue.

AugPg AugAgPg-2 AugAg,Pg-4 AugAg;Pg-2 AugAg,Ps-1

Aul -0.023 -0.018 -0.003 0.034 0.052
Au? -0.023 -0.008 0.009 0.026 0.037
Au3 -0.031 0.032 -0.008 0.033 0.037
Au? -0.044 -0.021 -0.003 0.024 0.057
AuS 0.002 0.057 0.086 0.114 0.143
Aus -0.009 0.035 0.083 0.109 0.116
Ag! - 0.077 0.057 0.123 0.179
Ag? - - 0.062 0.107 0.137
Ag? - - - 0.144 0.076
Ag - - - - 0.324
2Avg. of M, -0.021 0.022 0.035 0.079 0.116
bAvg. of AusAg, -0.030 -0.012 0.019 0.070 0.112

Note: 2Avg. of M, designates the average Hirshfeld charge of all metal atoms, while "Avg. of Au,Ag, denotes the average Hirshfeld charge of a core structure
comprising Au'* and all Ag atoms (Au> and Au® are excluded for their low coordination number with the other metal atoms).
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Scheme S1. The metal exchange of Ag* with Au* in AugPg

_ s Au’ Aus Au' Aus Au'
-4800.16 o7l o] = G A o da]
] g Aut v gt AU Ag' At~
-4800.18 -
. Au AgOPOC
-4800.20 -
-4800.22 -
-4800.24 -
T T T j ! ’ ! ' :
0 50 100 150 200

Figure S1. Geometry optimization energy profile of AugAgPs-2 and the selected
intermediate structures.
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Figure S2. Geometry optimization energy profile of AugAg,Pg-2 and the selected
intermediate structures.
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Figure S3. Constrained optimization profile by fixing Ag'-Au? bond at different
distances, and inset: illustrative diagram for the structural changes via inserting Ag3
into the Au2-Ag! bond.



Table S2. The CN of metal atoms in AugPs, AugAgPs-2, AugAg,Ps-4, AugAgsPs-1/2/3/4, and AugAg,Ps-1 structures, the charge of Au® and Au® was

highlighted in blue.

AUGPS AuGAgPs-Z AU5A82P8-4 AusAgng-l AUGAggpg'Z AUGAg3P3-3 AusAg3P3-4 AusAg4P8-1

Au? 4 (5) 5 (6) 4 (5) 3(4) 3 (4) 2 (3) 3 (4) 3 (4)
Au? 4 (5) 4 (5) 5 (6) 6 (7) 4 (5) 4 (5) 5.75 (6.75) 5 (6)
Au3 4 (5) 5(6) 5(6) 4 (5) 6(7) 4 (5) 4 (5) 5(6)
Au? 4 (5) 4 (5) 4 (5) 4 (5) 3 (4) 4 (5) 3.25 (4.25) 3 (4)
Aus 2 (4) 2 (4) 1(3) 1(3) 1(3) 1(3) 1(3) 1(3)
Aub 2 (4) 2 (4) 1(3) 1(3) 1(3) 1(3) 1(3) 1(3)
Ag! - 3(3) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 5(5)
Ag? - - 5(5) 5(5) 4(4) 3(3) 4 (4) 5(5)
Ag? - - - 3(3) 5(5) 5(5) 4 (4) 5(5)
Ag’ - - - - - - - 3(3)
aAvg. of M, 3.3 (4.7) 3.6 (4.7) 3.6 (4.6) 3.4 (4.3) 3.4 (4.3) 3.1(4.0) 3.3(4.2) 3.6 (4.4)
Avg. of
4.0(5.00  4.2(5.0) 4.5 (5.2) 4.1(4.7) 4.1(4.7) 3.7 (4.3) 4.0 (4.6) 4.3 (4.8)
AusAg,

Note: 2Avg. of M, designates the average coordination number of all-metal atoms without the coordination of P, while "Avg. of Au,Ag, denotes
the average coordination number of a core structure comprising Au'* and all Ag atoms (Au® and Au® are excluded for their low coordination
number with the other metal atoms). The values in brackets refer to the case where P coordination is considered.
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Scheme S2. The contribution of Au and Ag components in HOMO of AugAg, (n=0, 1, 2
and 3) cores in different clusters.
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Figure S4. The energy curve for geometry optimization starting from constrained
structure of AugPg-AugAgsPs (obtained via partial optimization by setting Au®-Au> at
3.0 A). From the energy curve, it can be seen that the two cluster blocks gradually
moves away during the geometry optimization, and collapse to a discrete state in a
barrierless way.
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Figure S5. The process of AugPg to AugPs-2. The terminal Au® and P! atoms were both
active for the subsequent size-growth process.
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Scheme S3. The energy and structure change after the reaction of AugPg-2 with
AugAgsPs-2 by coordination of P! to Au® atom.
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Figure S6. The energy profile for the 1,2-P2 migration during the transformation from
Dimer-1 to Dimer-2. Each structure is partially optimized at a given P?-Ag! bond
length. For clarity, only the alloy cluster block has been shown.



= -108 A

E 110 ] W%iw

= 1 w \

g -112- (o

> -114

5 -116 /

c .

¢ 1184 m

o J

'S 1204 2.803

B 122

T 124 ] AuePs

2 126 ]

© 1 Dimer-2

@ '128'_ -118.0

2 -130

- -132 T T T T T T T T T T T T T T T
238 2.9 3.0 31 3.2 3.3 3.4 3.5

Aus-Au’ bond distance (4)

Figure S7. The partial optimization energy profile from Dimer-2 to Dimer-3 via fixing
the Au3-Au! bond at different distances. Except for the changing AgsAgs blocks, all
other structures were omitted.
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Figure S8. The process of Dimer-3 to Dimer-6. The arms of the dangling P~P were
highlighted in different colors and labeled with numbers.
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Figure S9. The energy profile for the Au-Au formation from Dimer-6 to Dimer-7. The

remained part of Dimer-6 was omitted. Each restricted optimization was performed

with the fixed bond length of Au*-Au®.
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Scheme S3. The comparison between reactions of AugAgsPs-3 + AugPs - Au;Pg +
AU5Ag3P8 and AU5Ag3P8'3 + AugPg - AUGAgpg + AUSAgng.
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Scheme S4. The reaction from AusAgsPg to AusAgsPs-2 and the possible further size-
conversion.
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Scheme S5. The possible pathways of size-growth from AugAgsPs-3, AugAg,Ps-4, and

AugAgPg-2. The independent AugPg and each AugAg, species were set as the reference
for each pathway.



