The definition of coordination number (CN)

The coordination number (CN) of Au-Au bonds was calculated according to the definition of connectivity proposed by Pei and Ma.^[1] In detail, for each Au-Au bond, CN is 1, 0.75, 0.5, 0.25 and 0 when R_{Au-Au} (i.e. Au-Au distance) ranges from ≤ 3.1 , (3.1, 3.2], (3.2,3.3], (3.3,3.4], and >3.4 Å. Due to the similar atomic radii of Au and Ag atoms, CN of Au-Ag bond is defined as the same as Au-Au bonds. Meanwhile, the connectivity of Au-P bond is 1, 0.75, 0.5, 0.25 and 0 when R_{Au-P} ranges from ≤ 2.4 , (2.4, 2.45], (2.45, 2.5], (2.5, 2.55], and >2.55 Å.

References

1. C. Liu, Y. Pei, H. Sun, *et al.*, The Nucleation and Growth Mechanism of Thiolate-Protected Au Nanoclusters. *J. Am. Chem. Soc.* 2015, **137**, 15809-15816.

	Au ₆ P ₈	Au ₆ AgP ₈ -2	Au ₆ Ag ₂ P ₈ -4	Au ₆ Ag ₃ P ₈ -2	Au ₆ Ag ₄ P ₈ -1
Au ¹	-0.023	-0.018	-0.003	0.034	0.052
Au ²	-0.023	-0.008	0.009	0.026	0.037
Au ³	-0.031	0.032	-0.008	0.033	0.037
Au ⁴	-0.044	-0.021	-0.003	0.024	0.057
Au ⁵	0.002	0.057	0.086	0.114	0.143
Au ⁶	-0.009	0.035	0.083	0.109	0.116
Ag ¹	-	0.077	0.057	0.123	0.179
Ag ²	-	-	0.062	0.107	0.137
Ag ³	-	-	-	0.144	0.076
Ag ⁴	-	-	-	-	0.324
^a Avg. of M_n	-0.021	0.022	0.035	0.079	0.116
^b Avg. of Au₄Ag _n	-0.030	-0.012	0.019	0.070	0.112

Table S1. The Hirshfeld charge of metal atoms in Au_6P_8 , Au_6AgP_8-2 , $Au_6Ag_2P_8-4$, $Au_6Ag_3P_8-2$, and $Au_6Ag_4P_8-1$ structures, the charge of Au^5 and Au^6 was highlighted in blue.

Note: ^aAvg. of M_n designates the average Hirshfeld charge of all metal atoms, while ^bAvg. of Au_4Ag_n denotes the average Hirshfeld charge of a core structure comprising Au^{1-4} and all Ag atoms (Au^5 and Au^6 are excluded for their low coordination number with the other metal atoms).

Scheme S1. The metal exchange of $\mathsf{Ag}^{\scriptscriptstyle +}$ with $\mathsf{Au}^{\scriptscriptstyle +}$ in $\mathsf{Au}_6\mathsf{P}_8$

.

Figure S1. Geometry optimization energy profile of Au₆AgP₈-2 and the selected intermediate structures.

Figure S2. Geometry optimization energy profile of $Au_6Ag_2P_8-2$ and the selected intermediate structures.

Figure S3. Constrained optimization profile by fixing Ag¹-Au² bond at different distances, and inset: illustrative diagram for the structural changes via inserting Ag³ into the Au²-Ag¹ bond.

	Au ₆ P ₈	Au ₆ AgP ₈ -2	Au ₆ Ag ₂ P ₈ -4	Au ₆ Ag ₃ P ₈ -1	Au ₆ Ag ₃ P ₈ -2	Au ₆ Ag ₃ P ₈ -3	Au ₆ Ag ₃ P ₈ -4	Au ₆ Ag ₄ P ₈ -1
Au ¹	4 (5)	5 (6)	4 (5)	3 (4)	3 (4)	2 (3)	3 (4)	3 (4)
Au ²	4 (5)	4 (5)	5 (6)	6 (7)	4 (5)	4 (5)	5.75 (6.75)	5 (6)
Au ³	4 (5)	5 (6)	5 (6)	4 (5)	6 (7)	4 (5)	4 (5)	5 (6)
Au ⁴	4 (5)	4 (5)	4 (5)	4 (5)	3 (4)	4 (5)	3.25 (4.25)	3 (4)
Au ⁵	2 (4)	2 (4)	1 (3)	1 (3)	1 (3)	1 (3)	1 (3)	1 (3)
Au ⁶	2 (4)	2 (4)	1 (3)	1 (3)	1 (3)	1 (3)	1 (3)	1 (3)
Ag ¹	-	3 (3)	4 (4)	4 (4)	4 (4)	4 (4)	4 (4)	5 (5)
Ag ²	-	-	5 (5)	5 (5)	4 (4)	3 (3)	4 (4)	5 (5)
Ag ³	-	-	-	3 (3)	5 (5)	5 (5)	4 (4)	5 (5)
Ag ⁴	-	-	-	-	-	-	-	3 (3)
^a Avg. of M_n	3.3 (4.7)	3.6 (4.7)	3.6 (4.6)	3.4 (4.3)	3.4 (4.3)	3.1 (4.0)	3.3 (4.2)	3.6 (4.4)
^b Avg. of Au₄Ag _n	4.0 (5.0)	4.2 (5.0)	4.5 (5.2)	4.1 (4.7)	4.1 (4.7)	3.7 (4.3)	4.0 (4.6)	4.3 (4.8)

Table S2. The CN of metal atoms in Au₆P₈, Au₆AgP₈-2, Au₆Ag₂P₈-4, Au₆Ag₃P₈-1/2/3/4, and Au₆Ag₄P₈-1 structures, the charge of Au⁵ and Au⁶ was highlighted in blue.

Note: ^aAvg. of M_n designates the average coordination number of all-metal atoms without the coordination of P, while ^bAvg. of Au_4Ag_n denotes the average coordination number of a core structure comprising Au^{1-4} and all Ag atoms (Au^5 and Au^6 are excluded for their low coordination number with the other metal atoms). The values in brackets refer to the case where P coordination is considered.

Scheme S2. The contribution of Au and Ag components in HOMO of Au_6Ag_n (n=0, 1, 2 and 3) cores in different clusters.

Figure S4. The energy curve for geometry optimization starting from constrained structure of Au_6P_8 - $Au_6Ag_3P_8$ (obtained via partial optimization by setting $Au^{6'}$ - Au^5 at 3.0 Å). From the energy curve, it can be seen that the two cluster blocks gradually moves away during the geometry optimization, and collapse to a discrete state in a barrierless way.

Figure S5. The process of Au_6P_8 to Au_6P_8 -2. The terminal $Au^{5'}$ and P^1 atoms were both active for the subsequent size-growth process.

Scheme S3. The energy and structure change after the reaction of Au_6P_8 -2 with $Au_6Ag_3P_8$ -2 by coordination of P¹ to Au^6 atom.

Figure S6. The energy profile for the 1,2-P² migration during the transformation from **Dimer-1** to **Dimer-2**. Each structure is partially optimized at a given P²-Ag¹ bond length. For clarity, only the alloy cluster block has been shown.

Figure S7. The partial optimization energy profile from **Dimer-2** to **Dimer-3** via fixing the Au³-Au¹ bond at different distances. Except for the changing Ag_4Ag_3 blocks, all other structures were omitted.

Figure S8. The process of **Dimer-3** to **Dimer-6**. The arms of the dangling P^P were highlighted in different colors and labeled with numbers.

Figure S9. The energy profile for the Au-Au formation from **Dimer-6** to **Dimer-7**. The remained part of **Dimer-6** was omitted. Each restricted optimization was performed with the fixed bond length of Au^{4′}-Au⁵.

Scheme S3. The comparison between reactions of $Au_6Ag_3P_8$ -3 + $Au_6P_8 \rightarrow Au_7P_8$ + $Au_5Ag_3P_8$ and $Au_6Ag_3P_8$ -3 + $Au_6P_8 \rightarrow Au_6AgP_8$ + $Au_6Ag_2P_8$.

Scheme S4. The reaction from Au₅Ag₃P₈ to Au₅Ag₃P₈-2 and the possible further sizeconversion.

Scheme S5. The possible pathways of size-growth from $Au_6Ag_3P_8$ -3, $Au_6Ag_2P_8$ -4, and Au_6AgP_8 -2. The independent Au_6P_8 and each Au_6Ag_n species were set as the reference for each pathway.