Supplementary Information

Photothermal synthesis of CuO_x&FeO_y catalyst with layered double hydroxides-

derived pore-confined frame to achieve photothermal CO2 hydrogenation to CO

with a rate of 136 mmol min⁻¹ g_{cat}^{-1}

Lizhu Song^a, Xinli Yi^a, Shuxin Ouyang^{*,b}, Jinhua Ye^{a,c}

 ^a TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
 ^b Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
 ^c International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0047, Japan

Experimental Section

Synthesis of catalyst precursors:

Typically, 0.38 g Cu(NO₃)₂·3H₂O, 0.14 g Fe(NO₃)₃·9H₂O and 0.5 g LDH $(Mg_6Al_2(CO_3)(OH)_{16}\cdot4H_2O)$ were dissolved in 20 mL deionized water. Then the ethanol (10 mL) was added into the mixture and ultrasound-treated for 5 min to benefit the uniform dispersion of the LDH. All the water was evaporated through a simple evaporation process under magnetic stirring of the heating magnetic stirrer. Then the sample was transferred into a vacuum drying oven and dried at 70°C for 12 h to obtain the final powder. Following the same procedure, the powder samples consist of different components supported by different supports (Al₂O₃, MgO etc.) were synthesized follow the same procedure.

For comparison, the T-CuO_x&FeO_y/MAO catalyst was obtained by calcining the powder in 10% H_2 -Ar at 1015°C for 2 h.

Characterizations of catalysts:

The crystal structure was characterized by X-ray diffractometer (D/max-2500, Rigaku, Japan). The light adsorption properties of the catalysts were measured by Ultraviolet-visible (UV-Vis) spectroscopy (UV-2700, Shimadzu, Japan). The microstructure of the catalyst was performed on Scanning electron microscopy (SEM, Quanta FEG 250) and Transmission electron microscopy (TEM, JEM-F200). The spatial distribution of element was confirmed by energy-dispersive X-ray spectroscopy (EDS). The chemical valence state of the element was measured by Xray photoelectron spectroscopy (XPS, Escalab 250Xi, Thermo Fisher Scientific, England). Fourier transform infrared spectroscopy (FT-IR) was recorded by Nicolet 6700 Fourier transform instrument. The Brunauer-Emmett-Teller (BET) surface area and pore structure of the catalyst were analyzed by BET surface area measurement (Autosorb IQ2, Quantachrome, U.S.A.). The temperature of the catalyst surface was measured by a thermocouple (DT-311N).

Activity evaluation:

The reverse water gas shift (RWGS) reaction was carried out in a flow-type photothermal reactor. The process was as follows: 30 mg of the catalyst powder was spread onto a round shape air-permeable quartz fiber filter that was fixed on the sample stage of the reactor. The reaction gases of H₂ and CO₂ (the molar ratio of H₂: $CO_2 = 1: 1$) were injected into the reactor and the total flowrate was 400.0 mL min⁻¹. A 300 W Xe lamp (CEL-HXF300, CEAULIGHT) equipped with a quartz convergent lens group (FF50Q, MEIWO) was used as the light source, the power of the incident irradiation was 41.3 W (1.42 W/cm²). The focused irradiation areas of Xe lamp with and without quartz convergent lens group were 29.09 and 0.95 cm², respectively. Thus, the irradiation intensity was 439.4 kW m⁻² (439.4 suns) over catalyst surface. The gas products were detected by gas chromatography (GC-2014C, Shimadzu Co., Japan) equipped with a Paropak Q chromatographic column, a flame ionization detector (FID) and a methanizer. The flow rates of the gas products were measured by a soap flowmeter. The temperature of the catalyst surface was measured using a digital thermocouple (CUSTOM CT-1200D).

The calculations of gas conversion and generation rates:

$$CO_2(\%) = \frac{Inlet(CO_2) - outlet(CO_2)}{Inlet(CO_2)} \times 100\%$$
(1)

$$r(CO) = \frac{c(CO) * F}{m} \tag{2}$$

$$Sel(CO) = \frac{m * r(CO)}{Inlet(CO_2) - outlet(CO_2)} \times 100\%$$
(3)

Where $CO_2(\%)$ represents the conversion of CO_2 , $Inlet(CO_2)$ and $Outlet(CO_2)$ represent the flow rate of CO_2 at the inlet and outlet; r(CO) represents the generation rates of CO, F represents the total flow rate of the products, c(CO) represents the mole percent of CO in it, m represents the mass of the catalyst; Sel(CO) represent the selectivity of CO, respectively.

Fig. S1. a 3-D model illustration and b illustrated scheme of the flow-type reactor.

CuO _x &FeO _y /MAO	S _{BET}	Pore volume	Average pore size
	(m² g ⁻¹)	(cm ³ g ⁻¹)	(nm)
Before reaction	12.4	0.030	2.769
After reaction	34.9	0.070	3.627

Table S1. Specific surface area of the catalyst before and after reaction.

Fig. S2. a SEM image and b TEM image of LDH.

Fig. S3. a SEM image and b TEM image of CuO_x/MAO after RWGS reaction.

Fig. S4. UV-Vis absorption spectra of the catalysts after RWGS reaction.

Fig. S5. Temperature variation curves of the catalysts during the reaction.

Fig. S6. a SEM image and b TEM image of $CuO_x\&FeO_y/Al_2O_3$ after RWGS reaction.

Fig. S7. a SEM image and b TEM image of $CuO_x\&FeO_y/MgO$ after RWGS reaction.

Fig. S8. XRD of $CuO_x\&FeO_y/Al_2O_3$ and $CuO_x\&FeO_y/MgO$ after RWGS reaction.

Fig. S9. XRD of T-CuO_x&FeO_y/MAO before and after RWGS reaction.

Fig. S10. a Nitrogen adsorption-desorption isotherm and b pore-size distribution curve of T-CuO_x&FeO_y/MAO.

Fig. S11. Catalyst activity measurements of T-CuO_x&FeO_y/MAO.

Fig. S12. a SEM image and b TEM image of T-CuO_x&FeO_y/MAO after RWGS reaction.

Fig. S13. FT-IR spectrum of LDH.

Fig. S14. FT-IR spectrum of the spent catalysts.

Fig. S15. FT-IR spectrum of the spent CuO_x &FeO_y/MAO catalyst and CuO_x /MAO catalyst.

Fig. S16. The effect of catalyst composition on a, b CO production rate and c CH₄ production rate.

Fig. S17. CO evolution at photothermal condition with and without UV-light illumination over CuO_x &FeO_y/MAO catalyst. 30 mg of the catalyst powder, 376 °C, the total flowrate of H₂ and CO₂ (the molar ratio of H₂: CO₂ = 1: 1) was 60.0 mL min⁻¹.