Supplementary Information

Electrodiffusioosmosis induced negative differential resistance in micro-to-millimeter size pores through graphene/copper membrane

Sharad Kumar Yadav^{A,B,C}, Manikandan D^B, Chob Singh^B, Mukesh Kumar^B, Vishal V. R. Nandigana^{A,C} and Pramoda K. Nayak^{B,C,D*}

^ADepartment of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

^BDepartment of Physics, Indian Institute of Technology Madras, Chennai 600 036, India

^CMicro Nano and Bio-Fluidics Group, Indian Institute of Technology Madras, Chennai-600036, India

^D2D Materials Research and Innovation Group, Indian Institute of Technology Madras, Chennai-600036, India

*Corresponding author: E-mail address: pnayak@iitm.ac.in (P.K. Nayak)

Figure S1. Schematic of the experimental setup connections and the steps to sandwich the Gr/Cu membrane between the silicone O-ring.

Figure S2. The Variation in the membrane potential by applying the source potential in the range -1 V to +1 V to the electrodes using SMU. The membrane potential was recorded using DMM. 1 mm single pore is used at a concentration gradient of ∇ C=1000.

Figure S3. The I-V plot of the ion transport through different pores at concentration gradient of (a) $\nabla C = 100$, (b) $\nabla C = 1000$, (c) $\nabla C = 10000$. The black, red, and green color line curve represents the pore diameter of 1 mm SP, 2 mm SP, and 500 μ m SP, respectively. SP corresponds to a single pore.

Figure S4. The surface charge variation along the pore length at various applied voltages.

Figure S5. The I-V characteristic by applying the source potential (a) -1 to +1 V and (b) +1 to -1 V using 1 mm single pore at $\nabla C=1000$.