Supplementary Information

Pd/Ni-Metal-organic Framework-derived Porous Carbon Nanosheets for Efficient CO Oxidation over a Wide pH Range

Adewale K. Ipadeola^a, Kamel Eid^{b*}, Aboubakr M. Abdullah^{a*} Rashid S. Al-Hajri^c, and Kenneth I. Ozoemena^{d*}

^{a.}Center for Advanced Materials, Qatar University, Doha 2713, Qatar. E-mail: bakr@qu.edu.qa

^{b.}Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar. E-mail: kamel.eid@qu.edu.qa

^d Petroleum and Chemical Engineering Department, Sultan Qaboos University, Muscat, Oman

^d Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South

Africa. E-mail: Kenneth.ozoemena@wits.ac.za

Figure S1. (a) TEM image, (b) particle size distribution of Pd nanoparticles, (c) HRTEM image and (d) SAED of Pd/Ni-MOF/C

Figure S2. Particle size distribution of Pd nanoparticles in Pd/Ni-MOF/PC

Figure S3. (a) Raman spectra, (b) FTIR spectra and (c,d) BET surface analysis of Pd/Ni-MOF/PC and Pd/Ni-MOF/C

Table S1: ICP-OES and BET analysis of Pd/Ni-MOF/PC and Pd/Ni-MOF/C

Elemental composition/ BET data	Pd/Ni-MOF/PC	Pd/Ni-MOF/C
	,	
Pd (wt. %)	14.26 ± 0.25	21.40 ± 1.05
Ni (wt. %)	14.94 ± 0.69	43.12 ± 0.91
Pore size / nm	7.60	6.15
Pore volume / cm ³ /g	0.1240	0.1049
BET Surface area / m ² /g	153.0463	142.2231

Figure S4. (a) Bar chart of E_{onset} and E_{oxi} , (b) Chronoamperometry in CO-saturated 0.1 M HClO₄, and (c) Voigt electrical equivalent circuit (EEC)

Figure S5. TEM of Pd/Ni-MOF/PC after stability

Figure S6. (a) Bar chart of E_{onset} and E_{oxi} and (b) Chronoamperometry in CO-saturated 0.1 M KOH

Figure S7. (a) Bar chart of E_{onset} and E_{oxi} and (b) Chronoamperometry in CO-saturated 0.1 M NaHCO₃

Table S2: Comparative CO oxidation of the electrocatalysts with literature. s mA, Scan rates (v), Reference electrodes (REs), Maximum current (I_{Anode}), and oxidation potential (E_{Oxi})

Electrocatalysts	Medium / v (mV/s) / REs	I _{Anode} (mA/cm²) / E _{Oxi} (V)	Refs.
Pt(110)–Ru	0.5 M H ₂ SO ₄ / 100 / RHE	^{\$} 0.025 / 0.50	1
Pt-NbOx	0.5 M H ₂ SO ₄ / 20 / RHE	0.500 / 0.75	2
Well-ordered Pt(111)	0.1 M NaOH / 50 / RHE	0.500 / 0.80	3
PtRu (1:1)	0.1 M HClO ₄ / 50 / Ag/AgCl	0.120 / 0.25	4
Pt/SnO _x	1 M HClO ₄ / 20 / RHE	0.870 / 0.70	5
Pd/Ti ₃ C ₂ T _x	0.1 M HClO ₄ / 50 / Ag/AgCl	0.31/ 0.9	6
Pt(FAM)	0.1 M H ₂ SO ₄ / 50 / RHE	0.320 / 0.72	7
Dendrimer-encapsulated Pt nanoparticles	0.1 M HClO ₄ / 50 / Hg/Hg ₂ SO ₄	0.200 / 0.30	8
Polycrystalline Pd	0.5 M H ₂ SO ₄ / 20 / RHE	0.175 / 0.90	9
PdAg/C	0.5 KOH/ 20 / RHE	0.944 / 0.60	10
PtPd nanodendrites	1.0 M KOH / 50 / Ag/AgCl	5.100 / -0.15	11
60 wt. % Pt/C	0.5 H ₂ SO ₄ / 10 / SHE	0.200 / 0.64	12
PtRu@h-BN/C	0.1 M H ₂ SO ₄ / 20 / RHE	1.250 / 0.60	13
PtNi multicubes	1 M KOH / 50 / RHE	0.580 / 0.65	14
Pt polyhedron with smooth surfaces	0.5 M H ₂ SO ₄ / 50 / RHE	0.300 / 0.80	15
Pd/Ni-MOF/PC	0.1 M HClO ₄ / 50 / RHE	4.701 / 1.05	This work
	0.1 M KOH / 50 / RHE	3.936 / 0.74	
	0.1 M NaHCO ₃ / 50 / RHE	1.220 / 0.83	
Pd/Ni-MOF/C	0.1 M HClO _{4 /} 50 / RHE	1.356 / 1.06	This work
	0.1M KOH / 50 / RHE	2.660 / 0.73	
	0.1 M NaHCO ₃ / 50 / RHE	0.526 / 0.85	

References

- 1. J. C. Davies, B. E. Hayden and D. J. Pegg, *Electrochim. acta*, 1998, **44**, 1181-1190.
- 2. A. Ueda, Y. Yamada, T. Ioroi, N. Fujiwara, K. Yasuda, Y. Miyazaki and T. Kobayashi, Catal. Todays, 2003, 84, 223-229.
- 3. J. Spendelow, J. Goodpaster, P. J. A. Kenis and A. Wieckowski, J. Phys. Chem., 2006, 110, 9545-9555.
- 4. B. Du, S. A. Rabb, C. Zangmeister and Y. Tong, *Phys. Chem. Chem. Phys.*, 2009, **11**, 8231-8239.
- 5. T. Matsui, K. Fujiwara, T. Okanishi, R. Kikuchi, T. Takeguchi and K. Eguchi, J. Power Sources, 2006, 155, 152-156.
- 6. B. Salah, K. Eid, A. M. Abdelgwad, Y. Ibrahim, A. M. Abdullah, M. K. Hassan and K. I. Ozoemena, *Electroanalysis*, 2022, **34**, 677-683.
- 7. E. G. Ciapina, S. F. Santos and E. R. Gonzalez, J. Electroanal. Chem., 2010, 644, 132-143.
- 8. M. G. Weir, V. S. Myers, A. I. Frenkel and R. M. J. C. Crooks, *ChemPhysChem*, 2010, **11**, 2942-2950.
- 9. L.-I. Fang, Q. Tao, M.-f. Li, L.-w. Liao, D. Chen and Y.-x. Chen, *Chinese J. Chem. Phys.*, 2010, 23, 543-548.
- 10. T. Jurzinsky, C. Cremers, K. Pinkwart and J. Tübke, *Electrochim. Acta*, 2016, **199**, 270-279.
- 11. K. Eid, Y. H. Ahmad, H. Yu, Y. Li, X. Li, S. Y. AlQaradawi, H. Wang and L. J. N. Wang, *Nanoscale*, 2017, **9**, 18881-18889.
- 12. I. J. McPherson, P. A. Ash, L. Jones, A. Varambhia, R. M. Jacobs and K. A. Vincent, *J. Phys. Chem. C*, 2017, **121**, 17176-17187.
- 13. M. Sun, Y. Lv, Y. Song, H. Wu, G. Wang, H. Zhang, M. Chen, Q. Fu and X. Bao, *Appl. Surf. Sci.*, 2018, **450**, 244-250.
- 14. F. Wu, K. Eid, A. M. Abdullah, W. Niu, C. Wang, Y. Lan, A. A. Elzatahry and G. Xu, ACS Appl. Mater. Interfaces, 2020, **12**, 31309-31318.
- 15. D. Shen, Y. Liu, G. Yang, H. Yu, P.-F. Liu and F. Peng, *Appl. Catal. B.I*, 2021, **281**, 119522.