Supplementary Information

Composition-dependent Photoconductivities in Indium Aluminium Nitride Nanorods Grown by Magnetron Sputter Epitaxy

Bangolla Hemanth Kumar¹, Ming-Deng Siao¹, Yi-Hua Huang¹, Ruei-San Chen^{1,*}, Agnė Žukauskaitė², Justinas Palisaitis³, Per O. Å. Persson³, Lars Hultman³, Jens Birch³ and Ching-Lien Hsiao³
¹Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
²Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden 01277, Germany
³Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
*Email: rsc@mail.ntust.edu.tw

Supplementary Figure 1. Photocurrent response measurements of $In_xAl_{1-x}N$ NR devices under different powers of green light illumination with the wavelength of 532 nm. The photocurrent measurements include dark current.