## **Supporting Information**

## Oxygen Scavenging of HfZrO<sub>2</sub>-Based Capacitors for Improving Ferroelectric Properties

Bong Ho Kim,<sup>a</sup> Song-hyeon Kuk,<sup>a</sup> Seong Kwang Kim,<sup>a</sup> Joon Pyo Kim,<sup>a</sup> Dae-Myeong Geum,<sup>a</sup> Seung-Hyub Baek,<sup>b</sup> and Sang Hyeon Kim<sup>\*a</sup>

<sup>a</sup>School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea.

<sup>b</sup>Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea.

\*E-mail: shkim.ee@kaist.ac.kr



**Figure S1.** (a) Voltage drop distribution between HZO and IL according to the thickness of IL ( $d_{IL}$ ). (b) The electric field across the IL ( $E_{IL}$ ) as a function of the voltage drop across the HZO ( $V_{HZO}$ ) and the total applied voltage ( $V_{total}$ ).



**Figure S2.** Schematic illustrations of pulse measurements. (a) Positive-up-negative-down (PUND) method using double triangular pulses for extraction  $P_{\rm r}$ . (b) Bipolar triangular pulse for extraction of  $V_{\rm sw}$ . (c) Endurance pulse train and PUND method. (d) Retention measurement.



Figure S3. *I-V* curves of capacitors without and with scavenging according to PMA temperature of (a) 400, (b) 500, and (c) 600 °C measured by bipolar triangular pulse. In both capacitors,  $V_{sw}$  decreased as the PMA temperature increased. In particular, the decrease in  $V_{sw}$  was more pronounced in the capacitors with scavenging, implying that the oxygen scavenging is temperature-dependent. The capacitor with scavenging annealed at 600 °C exhibited the lowest  $V_{sw}$ , but the increase in leakage current was remarkable.



**Figure S4.** *P-V* curves of capacitors (a) without and (b) with scavenging according to PMA temperature of 400, 500, and 600 °C measured by bipolar triangular pulse. The as-deposited capacitors showed the *P-V* curve of a typical dielectric material without polarization hysteresis. In both capacitors,  $P_r$  increased as the PMA temperature increased. As shown in Figure S3, the leakage current increased as the PMA temperature increased in the capacitors with scavenging, resulting in an open loop.

## Journal Name



**Figure S5.** Endurance properties of capacitors (a) without and (b) with scavenging according to pulse amplitudes and frequencies. The breakdown is indicated by empty circles.



**Figure S6.** Endurance properties according to initial  $P_r$  and pulse frequency until (a) breakdown occurred and (b)  $P_r$  reached 10  $\mu$ C/cm<sup>2</sup>. Pulses with amplitudes of 3 to 6 V were applied.



**Figure S7.** *P-V* curves of capacitors (a) without and (b) with scavenging during endurance test with the pulse of 6 V/10 kHz. The table insets are calculated  $E_{int}$  according to the endurance cycles.



Figure S8. XPS Hf 4f spectra deconvoluted with  $HfO_2$  and sub-oxide at the top interface of capacitors (a) without and (b) with scavenging.



**Figure S9.** Plots of (a)  $V_{sw}$  and (b)  $P_r$  of 25 capacitors without and with scavenging and their mean and standard deviation.