Supporting information

A nanofiber hydrogel derived entirely from ocean biomass for wound healing

Tian-Cai Sun^a, Bing-Yu Yan^a, Xu-Chao Ning^b, Zhi-Yue Tang^a, Chao Hui^a, Mao-zhi Hu^c, Seeram Ramakrishna^d, Yun-Ze Long^{a, *}, Jun Zhang^{a, *}

^a Collaborative Innovation Center for Nanomaterials & Devices, College of Physics,

Qingdao University, Qingdao 266071, P. R. China

^b Medical College, Qingdao University, Qingdao 266071, P. R. China

^c Equipment Division, Qingyun County People's Hospital, Dezhou 253000, P. R.

China

^d Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering,

National University of Singapore, Singapore 117574, Singapore

^{*} Corresponding Authors

E-mail:yunze.long@qdu.edu.cn (Y. Z. Long) iamjunzhang@163.com (J. Zhang)

Fig.S1 Extraction and purification of collagen and CaCO₃ from fish scales of sea bass.

Fig.S2 SEM image of the synthesis of CuS at nanometer level.

Fig.S3 A) The extracted CuS was used to promote the fiber hydrogel crosslinking schematic.B) Cross-linking mechanism of FS-P hydrogel.

Fig.S4 The FS-P prepared without the process of spinning fibers.

Fig.S5 SEM images of FS-P-1 A) and FS-P-3 B) in nanofiber form and hydrogel form.

Fig.S6 Photo of FS-P hydrogel after heavy compression and knife cutting.

Fig.S7 Mechanism diagram of FS-P hydrogel adhesion to various materials.

Fig.S8 Shear-tension curve of FS-P hydrogel with pig skin.

Fig.S9 After treatment with a pure CS film for 24 hours, the film was uncovered, the bacteria situation of on the agar plate were observed.

Fig.S10 Photo of the bonding effect of nano-fiber and hydrogel.

Hair removal \implies Wound infection \implies FG-CuS soak \implies Laser irradiation

Fig.S11 Animal experiment processing steps.

Fig.S12 The thermal imager recorded the temperature change of a laser irradiation.

Fig.S13 Tissue blood vessels A) and Epidermal B) statistics were treated in different ways on day 7 (n=3,*P < 0.05,**P < 0.01).

Table S1 Abb	reviation, com	position and	Proportion of	of SA:CS in	1 FS-P hydrogel
Table ST AUU		iposition and	Toportion	01 0 $A.C0$ H	115-1 hydroger.

Abbreviation	Chemical composition	Proportion SA:CS
FS-P-1	Sodium alginate/Chitosan/Fish gelatin/CuS	10:1
FS-P-2	Sodium alginate/Chitosan/Fish gelatin/CuS	10:2
FS-P-3	Sodium alginate/Chitosan/Fish gelatin/CuS	10:3