Supporting Information

Transition Metal Dichalcogenides Magnetic Atomic Chains

Kai Zhang,¹ Xiaojun Wu^{1,2,*}, and Jinlong Yang^{1,2}

¹ Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China

² School of Chemistry and Materials Sciences, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China

* Corresponding Email Address: xjwu@ustc.edu.cn

Table of Contents

- Table S1: Relative energies of various nanowire configurations
- Table S2: Formation energies of 1D and 2D TMDs
- Figure S1: Phonon dispersion spectra of MX₂ single-chain
- Figure S2: AIMD simulations
- Table S3: The lattice parameters and atomic coordinates of nanowires
- Table S4: Formation energies of 1D chain with different stoichiometric ratio
- Figure S3: Spin configurations
- Table S5: Relative energies of different magnetic states
- Figure S4: Spin charge density distribution
- Figure S5: Projected band structures and density of states
- Figure S6: Partial charge density
- Figure S7: Energy difference between AFM and FM states with carrier injection
- Figure S8: Band structures of TiX₂ chains with carrier injection
- Figure S9: Band structures of VX₂ chains with carrier injection
- Figure S10: Band structures of CrS₂ and MX₂ chains with carrier injection
- Table S6: Magnetic anisotropy energy and easy magnetization axis
- Figure S11: Four types of inter-chain stacking configurations
- Table S7: The energies of bundles with different stacking configurations
- Figure S12: Atomic structures of twisted single chain TiS₂ nanowires
- Figure S13: Evolution of the total energy and band gap of twisted TiS₂
- Figure S14: The band structure of twisted TiS₂ nanowire
- Table S8: Lattice mismatch and supercells of joint heterostructures
- Figure S15: The evolution of binding energies
- Figure S16: Separation and charge transfer between CNT and chain
- Figure S17: Charge density difference in joint system
- Figure S18: Spin charge density distribution in joint system
- Figure S19: Projected density of states of joint system

Reference

Chain	A	Z	S	Т	C	Chain	A	Z	S	Т	C
TiS ₂	1.34	0.62	1.40	0	2.62	FeS ₂	0.65	0.22	0.64	0	1.59
TiSe ₂	1.18	0.97	1.20	0	2.08	FeSe ₂	0.36	0.12	0.37	0	1.15
TiTe ₂	0.86	0.18	0.86	0	1.35	FeTe ₂	0.28	0	0.36	0.14	0.77
VS ₂	1.30	0.90	1.29	0	2.59	ScS ₂	1.30	0	1.30	0.92	2.18
VSe ₂	1.04	0.68	1.04	0	2.15	ScSe ₂	1.20	0	1.01	0.82	2.00
VTe ₂	0.79	0.18	0.76	0	1.52	ScTe ₂	0.60	0	0.21	0.28	1.34
CrS ₂	1.84	0.66	1.10	0	2.11	CoS ₂	0.81	0	0.70	0.24	0.55
CrSe ₂	1.55	0.65	0.79	0	1.41	CoSe ₂	0.45	0	0.49	0.21	0.13
CrTe ₂	0.96	0.10	0.34	0	0.53	CoTe ₂	0.37	0	0.58	0.39	0.30
MnS ₂	1.17	0.29	0.77	0	2.16	NiS ₂	0.17	0	0.74	0.88	1.83
MnSe ₂	0.90	0.08	0.28	0	1.47	NiSe ₂	0.18	0	0.35	0.68	1.18
MnTe ₂	0.21	0	0.15	0.41	1.07	NiTe ₂	0.04	0	0.43	0.70	0.89

Table S1. The calculated relative energies (eV/metal) of transition metaldichalcogenides (TMD) chains with different configurations.

TMD	L	E _f			TMD	L		$\mathbf{E}_{\mathbf{f}}$	
		Chain	Н	Т			Chain	Н	Т
ScS ₂	3.67	-1.13	-1.16	-1.24	MnS ₂	5.23	-0.41	-0.46	-0.56
ScSe ₂	3.82	-1.02	-0.99	-1.17	MnSe ₂	5.41	-0.23	-0.34	-0.47
ScTe ₂	4.09	-0.53	-0.61	-0.75	MnTe ₂	3.77	0.01	-0.13	-0.22
TiS ₂	6.17	-1.09	-1.16	-1.31	FeS ₂	5.13	-0.26	-0.32	-0.37
TiSe ₂	6.37	-0.89	-1.01	-1.13	FeSe ₂	5.34	-0.15	-0.27	-0.31
TiTe ₂	6.72	-0.42	-0.61	-0.71	FeTe ₂	3.58	0.07	-0.09	-0.11
VS ₂	5.71	-0.76	-0.91	-0.90	CoS ₂	3.19	-0.18	-0.22	-0.33
VSe ₂	5.90	-0.58	-0.74	-0.68	CoSe ₂	3.32	-0.11	-0.22	-0.32
VTe ₂	6.19	-0.15	-0.35	-0.09	CoTe ₂	3.55	0.02	-0.15	-0.23
CrS ₂	5.32	-0.45	-0.66	-0.52	NiS ₂	3.30	-0.13	-0.17	-0.31
CrSe ₂	5.49	-0.27	-0.47	-0.43	NiSe ₂	3.40	-0.11	-0.17	-0.33
CrTe ₂	5.86	0.16	-0.08	-0.16	NiTe ₂	3.61	0.07	-0.05	-0.14

Table S2. The optimized lattice constant (L, Å), and formation energy (E_f , eV/atom) of TMD chains. The E_f of H-phase and T-phase TMD monolayers were computed for comparison.

Figure S1. The calculated phonon dispersion spectra of MX₂ chains.

Figure S2. AIMD evolutions of total energy per atoms during simulations. The inset show the snapshot of MX_2 chains at 300K after simulations.

Nanowire	TiS ₂	TiSe ₂	TiTe ₂	VS ₂	VSe ₂
Lattice	a = b = 25 Å	a = b = 25 Å	a = b = 25 Å	a = b = 25 Å	a = b = 25 Å
$\alpha = \beta = \gamma = 90^{\circ}$	c = 6.17 Å	c = 6.38 Å	c = 6.72Å	c = 5.71 Å	c = 5.90 Å
	Ti(0.5 0.5 0.25)	Ti(0.5 0.5 0.25)	Ti(0.5 0.5 0.25)	V(0.5 0.5 0.25)	V(0.5 0.5 0.25)
	Ti(0.5 0.5 0.75)	Ti(0.5 0.5 0.75)	Ti(0.5 0.5 0.75)	V(0.5 0.5 0.75)	V(0.5 0.5 0.75)
Atomic	S(0.567 0.5 0.0)	Se(0.573 0.5 0.0)	Te(0.581 0.5 0.0)	S(0.568 0.5 0.0)	Se(0.573 0.5 0.0)
coordinates	S(0.433 0.5 0.0)	Se(0.427 0.5 0.0)	Te(0.419 0.5 0.0)	S(0.432 0.5 0.0)	Se(0.427 0.5 0.0)
	S(0.5 0.433 0.5)	Se(0.5 0.427 0.5)	Te(0.5 0.419 0.5)	S(0.5 0.432 0.5)	Se(0.5 0.427 0.5)
	S(0.5 0.567 0.5)	Se(0.5 0.573 0.5)	Te(0.5 0.581 0.5)	S(0.5 0.568 0.5)	Se(0.5 0.573 0.5)
Nanowire	VTe ₂	CrS ₂	MnS ₂	MnSe ₂	
Nanowire Lattice	VTe_2 $a = b = 25 \text{ Å}$	CrS_2 $a = b = 25 \text{ Å}$	MnS_2 $a = b = 25 \text{ Å}$	$MnSe_2$ $a = b = 25 \text{ Å}$	
Nanowire Lattice $\alpha = \beta = \gamma = 90^{\circ}$	VTe_2 $a = b = 25 \text{ Å}$ $c = 6.19 \text{ Å}$	CrS_2 $a = b = 25 \text{ Å}$ $c = 5.32 \text{ Å}$	MnS_2 $a = b = 25 \text{ Å}$ $c = 5.23 \text{ Å}$	$MnSe_2$ $a = b = 25 \text{ Å}$ $c = 5.41 \text{ Å}$	
Nanowire Lattice $\alpha = \beta = \gamma = 90^{\circ}$	VTe ₂ a = b = 25 Å c = 6.19 Å V(0.5 0.5 0.25)	$CrS_2 a = b = 25 \text{ Å} c = 5.32 \text{ Å} Cr(0.5 0.5 0.25)$	$ MnS_2 a = b = 25 Å c = 5.23 Å Mn(0.5 0.5 0.25) $	$MnSe_{2}$ $a = b = 25 \text{ Å}$ $c = 5.41 \text{ Å}$ $Mn(0.5 \ 0.5 \ 0.25)$	
Nanowire Lattice $\alpha = \beta = \gamma = 90^{\circ}$	VTe_2 $a = b = 25 \text{ Å}$ $c = 6.19 \text{ Å}$ $V(0.5 \ 0.5 \ 0.25)$ $V(0.5 \ 0.5 \ 0.75)$	CrS_2 $a = b = 25 \text{ Å}$ $c = 5.32 \text{ Å}$ $Cr(0.5 \ 0.5 \ 0.25)$ $Cr(0.5 \ 0.5 \ 0.75)$	$\frac{MnS_2}{a = b = 25 \text{ Å}}$ $c = 5.23 \text{ Å}$ $Mn(0.5 \ 0.5 \ 0.25)$ $Mn(0.5 \ 0.5 \ 0.75)$	$MnSe_2 a = b = 25 \text{ Å} c = 5.41 \text{ Å} Mn(0.5 0.5 0.25) Mn(0.5 0.5 0.75)$	
Nanowire Lattice $\alpha = \beta = \gamma = 90^{\circ}$ Atomic	VTe_2 $a = b = 25 \text{ Å}$ $c = 6.19 \text{ Å}$ $V(0.5 \ 0.5 \ 0.25)$ $V(0.5 \ 0.5 \ 0.75)$ $Te(0.581 \ 0.5 \ 0.0)$	CrS_2 $a = b = 25 \text{ Å}$ $c = 5.32 \text{ Å}$ $Cr(0.5 \ 0.5 \ 0.25)$ $Cr(0.5 \ 0.5 \ 0.75)$ $S \ (0.567 \ 0.5 \ 0.0)$	MnS_2 $a = b = 25 \text{ Å}$ $c = 5.23 \text{ Å}$ $Mn(0.5 \ 0.5 \ 0.25)$ $Mn(0.5 \ 0.5 \ 0.75)$ $S(0.566 \ 0.5 \ 0.0)$	$MnSe_2$ $a = b = 25 \text{ Å}$ $c = 5.41 \text{ Å}$ $Mn(0.5 \ 0.5 \ 0.25)$ $Mn(0.5 \ 0.5 \ 0.75)$ $Se(0.571 \ 0.5 \ 0.0)$	
Nanowire Lattice $\alpha = \beta = \gamma = 90^{\circ}$ Atomic coordinates	VTe_2 $a = b = 25 \text{ Å}$ $c = 6.19 \text{ Å}$ $V(0.5 \ 0.5 \ 0.25)$ $V(0.5 \ 0.5 \ 0.75)$ $Te(0.581 \ 0.5 \ 0.0)$ $Te(0.419 \ 0.5 \ 0.0)$	CrS_2 $a = b = 25 \text{ Å}$ $c = 5.32 \text{ Å}$ $Cr(0.5 \ 0.5 \ 0.25)$ $Cr(0.5 \ 0.5 \ 0.75)$ $S \ (0.567 \ 0.5 \ 0.0)$ $S(0.433 \ 0.5 \ 0.0)$	$\frac{MnS_2}{a = b = 25 \text{ Å}}$ $c = 5.23 \text{ Å}$ $Mn(0.5 0.5 0.25)$ $Mn(0.5 0.5 0.75)$ $S(0.566 0.5 0.0)$ $S(0.434 0.5 0.0)$	$MnSe_2$ $a = b = 25 \text{ Å}$ $c = 5.41 \text{ Å}$ $Mn(0.5 \ 0.5 \ 0.25)$ $Mn(0.5 \ 0.5 \ 0.75)$ $Se(0.571 \ 0.5 \ 0.0)$ $Se(0.429 \ 0.5 \ 0.0)$	
Nanowire Lattice $\alpha = \beta = \gamma = 90^{\circ}$ Atomic coordinates	VTe_2 $a = b = 25 \text{ Å}$ $c = 6.19 \text{ Å}$ $V(0.5 \ 0.5 \ 0.25)$ $V(0.5 \ 0.5 \ 0.75)$ $Te(0.581 \ 0.5 \ 0.0)$ $Te(0.419 \ 0.5 \ 0.0)$ $Te(0.5 \ 0.419 \ 0.5)$	CrS_2 $a = b = 25 \text{ Å}$ $c = 5.32 \text{ Å}$ $Cr(0.5 \ 0.5 \ 0.25)$ $Cr(0.5 \ 0.5 \ 0.75)$ $S \ (0.567 \ 0.5 \ 0.0)$ $S(0.433 \ 0.5 \ 0.0)$ $S(0.5 \ 0.433 \ 0.5)$	MnS_2 $a = b = 25 \text{ Å}$ $c = 5.23 \text{ Å}$ $Mn(0.5 \ 0.5 \ 0.25)$ $Mn(0.5 \ 0.5 \ 0.75)$ $S(0.566 \ 0.5 \ 0.0)$ $S(0.434 \ 0.5 \ 0.0)$ $S(0.5 \ 0.434 \ 0.5)$	$MnSe_2$ $a = b = 25 \text{ Å}$ $c = 5.41 \text{ Å}$ $Mn(0.5 \ 0.5 \ 0.25)$ $Mn(0.5 \ 0.5 \ 0.75)$ $Se(0.571 \ 0.5 \ 0.0)$ $Se(0.429 \ 0.5 \ 0.0)$ $Se(0.5 \ 0.429 \ 0.5)$	

Table S3. The lattice parameters and atomic coordinates of nanowires.

Composition	M:X			Composition	M:X		
	1:2	1:1 (Ref ¹)	1:3 (Ref ²)		1:2	1:1 (Ref ¹)	1:3 (Ref ²)
ScS	-1.13	-1.52	/	MnS	-0.41	0.24	/
ScSe	-1.02	-1.34	/	MnSe	-0.23	0.36	/
ScTe	-0.53	-0.95	/	MnTe	0.01	0.61	/
TiS	-1.09	-1.14	-1.04	FeS	-0.26	-0.35	/
TiSe	-0.89	-0.95	-0.83	FeSe	-0.15	-0.26	/
TiTe	-0.42	-0.57	-0.51	FeTe	0.07	/	/
VS	-0.76	-0.78	-0.65	CoS	-0.18	-0.27	/
VSe	-0.58	-0.61	-0.46	CoSe	-0.11	-0.20	/
VTe	-0.15	-0.31	-0.16	СоТе	0.02	-0.05	/
CrS	-0.45	-0.55	/	NiS	-0.13	-0.31	/
CrSe	-0.27	-0.41	/	NiSe	-0.11	-0.25	/
CrTe	0.16	-0.17	/	NiTe	0.07	-0.13	/

Table S4. The formation energies of 1D nanowires with different stoichiometric ratio.

Figure S3. Various spin configurations including nonmagnetic (NM), ferromagnetic (FM) and two anti-ferromagnetic (AFM) states. The majority spin and minority spin on the metal atoms are represented by red and blue arrows, respectively.

Chain	NM		AFM-1		AFM-2		G.S	
	PBE	HSE06	PBE	HSE06	PBE	HSE06	PBE	HSE06
VS ₂	244	558	210	170	147	311	FM	FM
VSe ₂	218	546	196	257	155	342	FM	FM
VTe ₂	208	776	189	426	170	232	FM	FM
CrS ₂	11	184	10	62	12	165	FM	FM
MnS ₂	-213	444	-224	-540	-154	-283	AFM-1	AFM-1
MnSe ₂	39	596	-8	-709	36	-323	AFM-1	AFM-1

Table S5. The relative energies (meV/M) between FM, NM, and AFM states.

Figure S4. Lateral views of spin charge density distribution on MX_2 chains with an isovalue of 0.02 e/Bohr³. The majority and minority spin densities are shaded in blue and red colors, respectively.

Figure S5. The projected band structures and density of states of (a) TiSe₂, (b) TiTe₂, (c) VSe₂, (d) VTe₂ and (e) MnSe₂ chains.

Figure S6. The partial charge density of the valence band maximum (VBM) and conduction band minimum (CBM) for MX_2 atomic chains are plotted by purple and blue colors with an isovalue of 5×10^{-3} .

Figure S7. The energy difference between AFM and FM states of MX_2 chains with carrier injection.

Figure S8. The band structures of (a) TiS_2 , (b) $TiSe_2$, and (c) $TiTe_2$ chains with carrier injection.

Figure S9. The band structures of (a) VSe_2 and (b) VTe_2 chains with carrier injection.

Figure S10. The band structures of (a) CrS_2 , (b) MnS_2 , and (c) $MnSe_2$ chains with carrier injection.

Chain	E[001] - E[100]	EA
VS ₂	-51.7	[001]
VSe ₂	-588.4	[001]
VTe ₂	-3784.2	[001]
CrS ₂	19.0	[100]
MnS ₂	122.1	[100]
MnSe ₂	-807.1	[001]

Table S6. Calculated magnetic anisotropy energy ($\mu eV/metal$) of MX₂ chains. EA refers to the easy magnetization axis.

Figure S11. The four types of inter-chain stacking configurations. The top and side views are displayed in left and right panels, respectively. The adjacent chain is shown with different colors.

Table S7. The calculated total energies (eV/metal), inter-chain coupling energy ($E_c = E_{bundle} - 2E_{chain}$, meV/metal) and energy difference between inter-chain FM and inter-chain AFM states ($\Delta E = E_{AFM} - E_{FM}$, meV/metal).

	AA-stacking		AB-stacking		AC-stacking		AD-stacking			
	FM	AFM	FM	AFM	FM	AFM	FM	AFM	Ec	ΔΕ
VS ₂	-78.499	-78.498	-78.601	-78.612	-78.530	-78.528	-78.612	-78.613	-166	-0.3
VSe ₂	-71.468	-71.466	-71.589	-71.597	-71.505	-71.506	-71.614	-71.697	-232	-20.6
VTe ₂	-63.651	-63.652	-63.810	-63.823	-63.816	-63.704	-64.000	-63.891	-318	27.3
CrS ₂	-77.169	-77.162	-77.303	-77.293	-77.210	-77.301	-77.394	-77.452	-256	-14.4

Figure S12. Atomic structures of twisted single chain TiS_2 nanowires. The side and front views are shown in left and right panels, respectively.

Figure S13. Variation of the total energy per metal and energy gap of twisted TiS_2 nanowire with the rotation angle.

Figure S14. The band structure of twisted TiS_2 nanowire with different rotation angle at PBE level.

Table S8. The unit cell lattice constant L (Å) of chain and CNT, the supercells of chains (m) and CNT (n) used to construct heterostructures, and the lattice mismatch between chain and CNT. The "+" and "-" represent tensile and compressive strains, respectively.

CNT@Chain	Chain	CNT	Supercell	Mismatch
	L	L	(Chain) m : n (CNT)	(%)
TiS ₂	6.17	2.46	2:5	+0.4
TiSe ₂	6.37	2.46	2:5	+3.7
TiTe ₂	6.72	2.46	3:8	+2.4
VS ₂	5.71	2.46	3:7	-0.4
VSe ₂	5.90	2.46	3:7	+2.9
VTe ₂	6.19	2.46	2:5	+0.6
CrS ₂	5.32	2.46	4:9	-3.9
MnS ₂	5.23	2.46	4:9	-5.5
MnSe ₂	5.41	2.46	4:9	-2.2

Figure S15. The evolution of binding energy with diameter of CNT. The inset shows front views of MX_2 chains embedded in CNT.

Figure S16. The separation d between chain and CNT, and charge transfer q (e/metal) from CNT to chain.

Figure S17. Electron density transferred from the CNT to the inside MX_2 chains. Isovalues are set as 2×10^{-4} , 4×10^{-4} , and 5×10^{-4} e/Bohr³ for (a) TiX₂, (b) VX₂, and (c) MnX₂ single-chain embedded inside CNT. Electron accumulation and depletion are shaded in blue and red, respectively.

Figure S18. The spin charge density distribution in joint system. The majority and minority spin charge density are displayed in cyan and purple, respectively.

Figure S19. The projected density of states of MX_2 chains encapsulated inside CNT.

Reference:

- 1. C. Shang, L. Fu, S. Zhou and J. Zhao, *JACS Au*, 2021, **1**, 147-155.
- 2. S. Stonemeyer, J. D. Cain, S. Oh, A. Azizi, M. Elasha, M. Thiel, C. Song, P. Ercius, M. L. Cohen and A. Zettl, *Journal of the American Chemical Society*, 2021, **143**, 4563-4568.