Supporting information

Painless and sensitive Pepsinogen I detection: an electrochemical immunosensor based on rhombic dodecahedral Cu₃Pt and MoS₂ NFs

Shanshan Wei¹, Shiyong Li¹, Haolin Xiao^{1,2}, Feijun Zhao², Jianming Zhu², Zhencheng Chen^{1,2,*}, Liangli Cao^{2*}

- School of Electronic Engineering and Automation, Guilin University of Electronic Technology,
 Guilin 541004, China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- *Corresponding authors: chenzhcheng@163.com (Zhencheng Chen), caoliangli216@163.com (Liangli Cao)

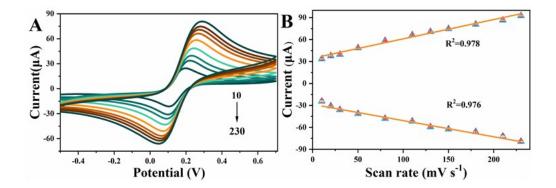


Fig.S1. (A) CVs of the immunosensor at different scan rates; 10, 20, 30, 50, 80, 110, 130, 150, 180, 210 and 230 mV s⁻¹ in in a 5 mM Fe(CN)₆^{3-/4-} solution (B) The linear relationship between the peak currents and the scan rate.

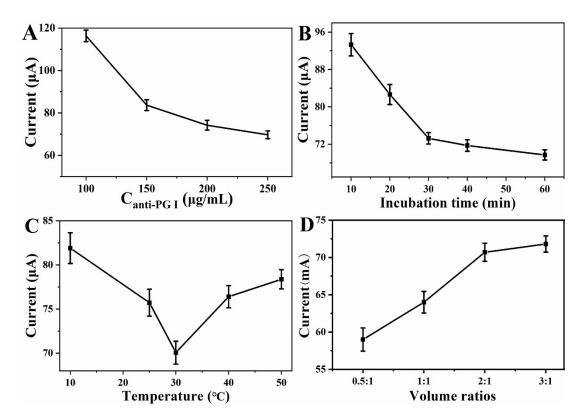


Fig. S2. The effect of the (A) concentration of anti-PG I, (B) incubation time, (C) incubation temperature and (D) concentration of $MoS_2@Cu_3Pt$ NPs on peak currents of the proposed immunosensor.