Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Two-dimensional Wide-bandgap GeSe₂ Vertical Ultraviolet Photodetectors with High Responsivity and Ultrafast Response Speed

Yong Yan ^{a,} *, Jie Li ^a, Shasha Li ^a, Mengna Wang ^a, Gaoli Luo ^a, Xiaohui Song ^a, Suicai Zhang ^a, Yurong Jiang ^a, Ruiping Qin ^a, and Congxin Xia ^{a,} *

a. School of Physics, Henan Normal University, Xinxiang, Henan province, China.

*E-mail: <u>yanyong@htu.edu.cn</u> and <u>xiacongxin@htu.edu.cn</u>

Figure S1. a) EDS spectrum of a graphene/GeSe₂/graphene. EDS elemental mappings of b) Ge and c) Se.

Figure S2.a) Optical micrograph of the graphene/GeSe₂(d=70.3 nm)/ graphene device and corresponding height profile. b) ln (I) vs. V_{ds} plot for the TE behavior at $V_{ds} < -$ 0.5 V and c) $V_{ds} > 1.5$ V. d) Optical micrograph of the graphene/GeSe₂(d=5.9 nm)/ graphene device and corresponding height profile. e) ln (I/V_{ds}²) vs. ln (V_{ds}⁻¹) plot for the DT behavior at $|V_{ds}| < 0.1$ V. f) ln (I) vs. V plot for the TE behavior between 0.1

Figure S3. Band alignment of Gr/GeSe₂ heterostructures shows that the conduction

Figure S4. a) Optical micrograph of the heterojunction with different thicknesses and AFM images. b) Corresponding height profile. GeSe₂ thin layers with different thicknesses overlapping between graphene were identified by combining optical contrast and AFM measurements. The thickness of GeSe₂ ranged from 9.8 nm to 45.9 nm, and the effective area ranged from 2.9 to 98.5 um², depending on the specific

device.

Figure S5. Optoelectronic properties of different heterogeneous structures. a)
Responsivity (R), b) external quantum efficiency (EQE) and c) detectivity (D) under a 405 nm laser as a function of light power density under V_{ds} = 1 V.