Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Giant tunneling magnetoresistance in two-dimensional magnetic tunnel

junctions based on double transition metal MXene ScCr₂C₂F₂

Zhou Cui¹, Yinggan Zhang^{2,*}, Rui Xiong¹, Cuilian Wen¹, Jian Zhou³, Qingshui Xie², Baisheng

Sa^{1,**} Zhimei Sun^{3,***}

¹Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China

² College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China

³School of Materials Science and Engineering, and Center for Integrated Computational Materials

Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China

Corresponding Author: ygzhang@xmu.edu.cn (Y. Zhang); bssa@fzu.edu.cn (B. Sa); zmsun@buaa.edu.cn (Z. Sun).

Fig. S1 The spin-dependent k_{\parallel} -resolved transmission spectrums of MTJ-HM at the Fermi level for (a) spin-up and (b) spin-down channel in PC state, (c) spin-up and (d) spin-down channel in APC

state.

Fig. S2 The spin-dependent k_{\parallel} -resolved transmission spectrums of MTJ-5HM at the Fermi level for (a) spin-up and (b) spin-down channel in PC state, (c) spin-up and (d) spin-down channel in APC

state.

Fig. S3 The spin-dependent projected local density of states of MTJ-HM for (a) spin-up and (b) spin-down channel in PC state, (c) spin-up and (d) spin-down channel in APC state.

Fig. S4 The spin-dependent projected local density of states of MTJ-5HM for (a) spin-up and (b) spin-down channel in PC state, (c) spin-up and (d) spin-down channel in APC state.

Table S1 The calculated total spin-dependent conductances (e^2/h) in PC state G_{PC} and APC state G_{APC} , and TMR ratios with and without spin-orbit coupling (SOC) for MTJ-HM, MTJ-3HM and MTJ-5HM devices.

MTJs	$G_{ m PC}$	$G_{ m APC}$	TMR (%)	$G_{_{ m PC}}^{ m SOC}$	$G_{_{ m PC}}^{ m SOC}$	TMR ^{SOC} (%)
MTJ-HM	1.19×10 ⁻⁵	4.05×10 ⁻¹⁰	2.95×10 ⁶	5.93×10-4	2.06×10-6	2.87×10^{4}
MTJ-3HM	1.30×10 ⁻⁸	1.86×10 ⁻¹³	6.95×10 ⁶	2.15×10 ⁻⁷	5.45×10 ⁻¹⁰	3.94×10^{4}
MTJ-5HM	5.51×10-11	5.96×10 ⁻¹⁵	9.24×10 ⁵	3.68×10-11	1.13×10 ⁻¹³	3.26×10^{4}