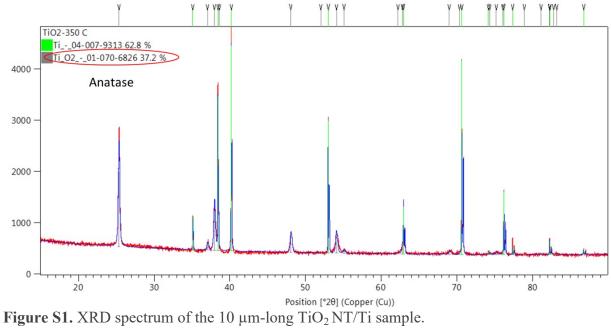
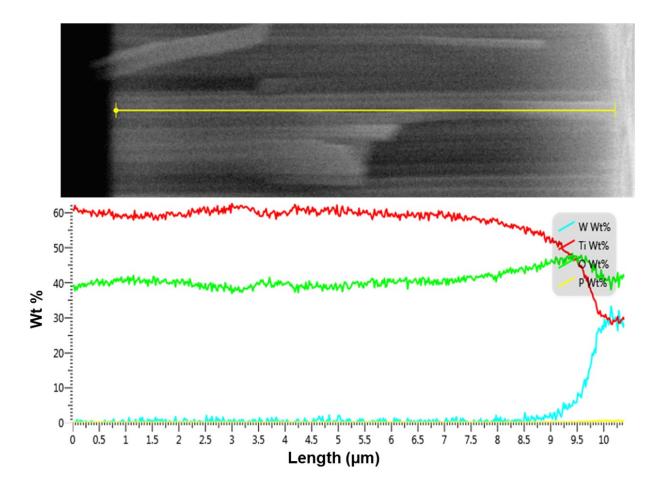
### **Supplementary Information**

# Soft landing of polyatomic anions onto three-dimensional semiconductive and conductive substrates


Habib Gholipour-Ranjbar,<sup>a</sup> Hang Hu,<sup>a</sup> Pei Su,<sup>a</sup> Hugo Yuset Samayoa Oviedo<sup>a</sup>, Christopher Gilpin, <sup>c</sup> Haomin Wang,<sup>b</sup> Yingying Zhang,<sup>b</sup> and Julia Laskin<sup>a</sup>\*


<sup>a</sup> Department of Chemistry, Purdue University, West Lafayette, IN, 47906 USA

<sup>b</sup>Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China

<sup>c</sup>Life Science Microscopy Facility, Purdue University, West Lafayette, IN, 47907 USA

Correspondence to: jlaskin@purdue.edu





**Figure S2.** EDX line scans across the length of WPOM/TiO<sub>2</sub> with the coverage of  $6.2\beta$  14 ions (960 ng). The results are expressed in terms of weight percentages (Wt%) of the elements

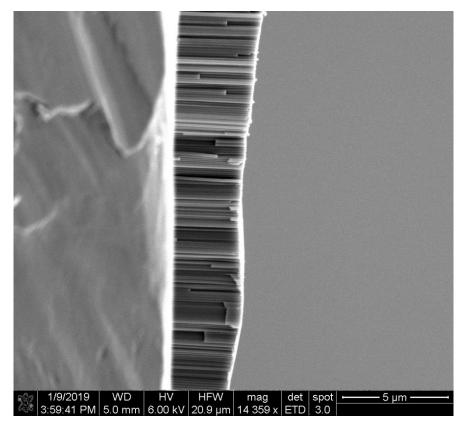
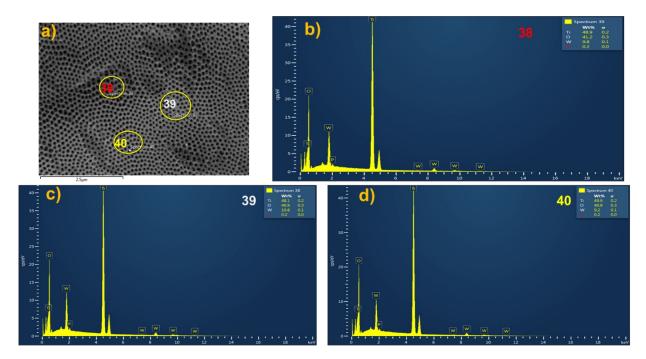
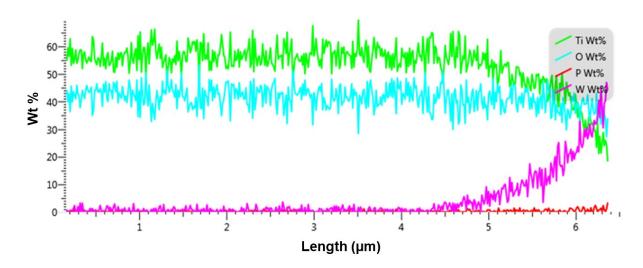





Figure S3. SEM image of 6  $\mu$ m WPOM/TiO<sub>2</sub> NTs attached to the Ti substrate.



**Figure S4.** (a) SEM image of the  $TiO_2$ /WPOM sample and (a,b,c) is the EDX spectra of the sample at point 38, 39, and 40.



**Figure S5.** EDX line scans across the short  $TiO_2$  NTs (6  $\mu$ m)/ with the coverage of 3.0 $\beta$  14 ions (480 ng). The results are expressed in terms of weight percentages (Wt%) of the elements.

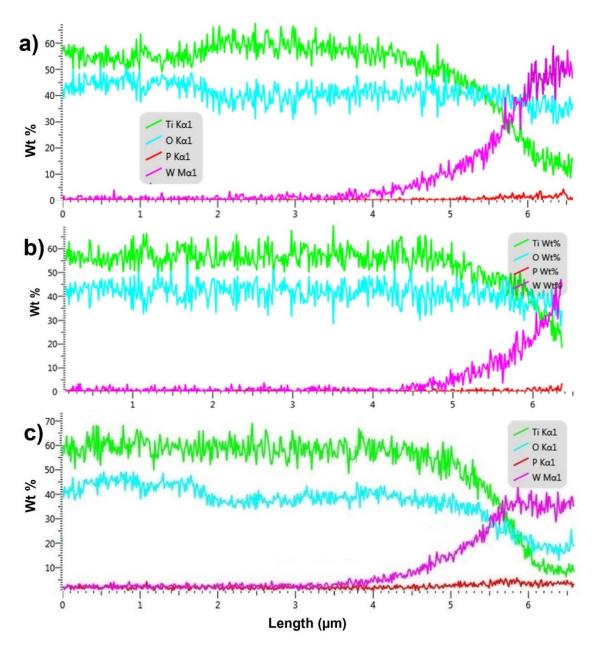
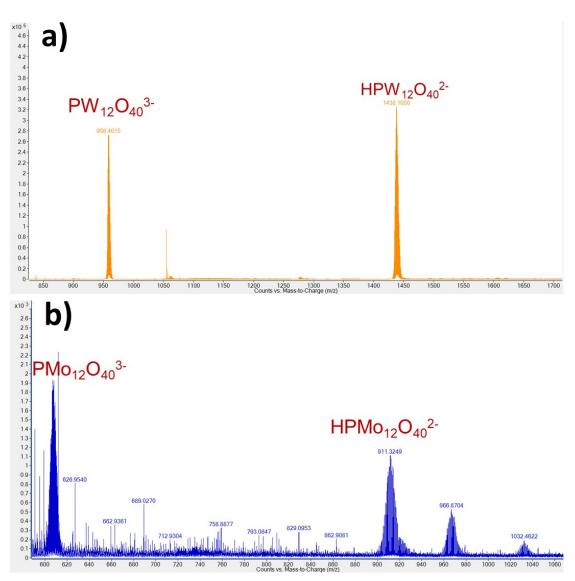
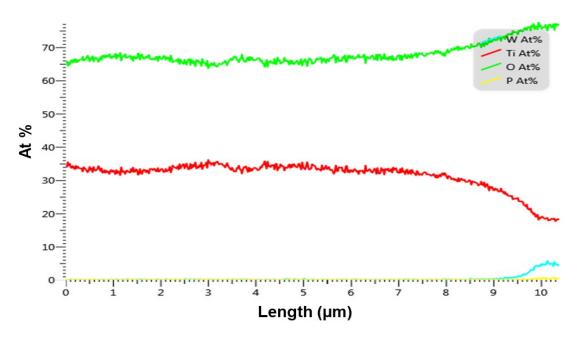
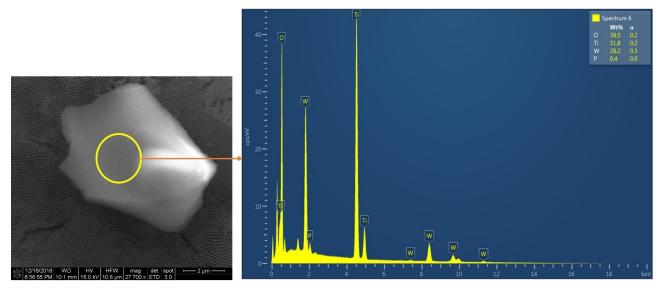





Figure S6. EDX line scan profile of 6  $\mu m$  TiO\_2/WPOM at different region of the TiO\_2 cross section.




**Figure S7.** (a) mass spectrum of the TiO<sub>2</sub>/WPOM sample with the coverage of  $1.0 \not \approx 10^{14}$  ions and (b) mas spectrum of the VACNT/MoPOM with the coverage of  $1.0 \not \approx 10^{14}$ .

.



**Figure S8.** EDX line scans across the length of pristine WPOM/TiO<sub>2</sub> with the coverage of  $6.2\beta$  10<sup>14</sup> ions (980 ng). The results are expressed in terms of atomic percentages (At%) of the elements.



**Figure S9.** SEM image of the WPOM/TiO<sub>2</sub> with the coverage of  $6.2\beta$  14 ions (960 ng) and the EDX spectrum of the aggregated anions on the surface.

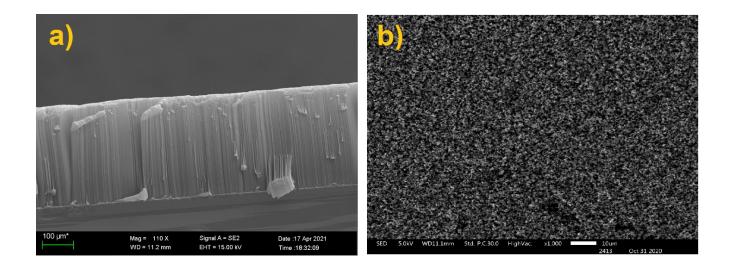
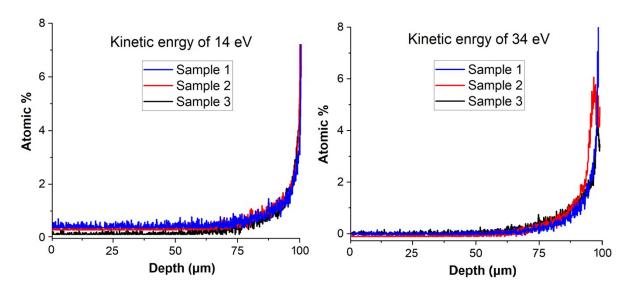




Figure S10. (a) side view and (b) top view of VACNT before soft landing anions.



**Figure S11.** EDX line scan profile of VACNT/MoPOM samples with the coverage of  $1.0 \, \text{\&} 10^{14}$  ions and KE of (a)14 eV (b) 34 eV

#### **Calculation of ion coverage**

We measure the image current using picoamp meter (I). Based on the measured image current we calculate number of the soft-landed ions on a surface.

The image current measured in the soft landing experiment was ~6 nA/S:

Measured Ion current (I)  $\beta$  time (S)  $\beta$  charge generated by one mol of triply charged anion (POM)  $\beta$ # of anions in 1mol = coverage of anions

 $6.0 \mbox{$\widehat{\beta}$} 10^{-9} \mbox{ C/S $\widehat{\beta}$} (400 \mbox{ min $\widehat{\beta}$} \mbox{$\frac{60 \ S}{1min}$} \mbox{$\widehat{\beta}$} \mbox{$\frac{1mol \ ion}{(96352 \ C) \mbox{$\widehat{\beta}$} 3}} \mbox{$\widehat{\beta}$} \mbox{$\frac{6.022 \ \mbox{$\widehat{\beta}$} 1023}{1mol \ ion}$} = 3.0 \ \mbox{$\widehat{\beta}$} 10^{14} \ \mbox{$\#$ of anions}$}$ 

Q=n  $\beta e = 6.022 \beta 10^{23} \beta 1.6 \beta 10^{-19} = 96352C$ Q: charge of 1 mol electron e: charge on 1 electron= 1.6  $\beta 10^{-19}$ 

#### Calculation of number of monolayers (ML) on surfaces

The average diameter of the ion beam was approximately 5 mm. r1=2.50 mm Deposition area:  $A = \pi r 1^2$ 

We assume that the radius of the WPOM anions is 0.9 nm. R2=0.9 nm

$$\frac{\pi r 2^2}{r^2}$$
 9.0  $\beta$  10 - 7

Ratio of the area covered by each ion:  $\pi r 1^2 = (2.50)^2 = 12.9 \ \text{\&} 10^{-14}$ This means that one ion covers  $12.96 \ \text{\&} 10^{-12} \ \text{\&}$  of the monolayer of the total area. Therefore 100% of a monolayer will require  $1.29 \ \text{\&} 10^{13} \approx 1.3 \ \text{\&} 10^{13}$  ions. In the samples with the coverage of  $3.0 \times 10^{14}$  ions, there will be 23 monolayers.

## Estimated ion flux per unit time per area corresponding to a single TiO2 NT (100 nm in diameter)

- Deposition current=  $6 \text{ nA} = 6.0 \beta 10^{-9} \text{ C/s}$
- Area corresponding to a single TiO2 NT (100 nm diameter, r=50 nm)=  $A = \pi r^2$
- Ion flux per unit time per area corresponding to a single TiO2 NT (100 nm diameter) =  $6.0\beta 10 9 C/s$

$$A = 0.0764 \,\text{\ref{abs}} \, 10^5 \,\text{C/s.m}^2 = 0.00764 \,\,\text{C/\mu s. m}^2$$

Table1. List of voltages on the ion soft-landing instrument for depositing POM anions.

| Ion optics component | Voltages (V) |
|----------------------|--------------|
| Repel in             | 385          |
| Repel out            | 380          |
| HPF in               | 331          |
| HPF out              | 160          |
| LPF in               | 163          |
| LPF out              | 16           |
| HPF Drive            | 22.6         |
| LPF Drive            | 24.7         |
| HPF Freq             | 690000 Hz    |
| LPF Freq             | 912000 Hz    |
| Bent flatapole       | 32 V         |

HPF: High pressure funnel

LPF: Low pressure funnel