Supplementary Information

Durability Studies of Underwater Superoleophobic Graphene Oxide Coated Wire Mesh

Pichkari Saikiran, Mayuri Dhole and Nandini Bhandaru*

Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Pin - 500 078, Telangana, India

Corresponding author: nandini@hyderabad.bits-pilani.ac.in

Typically, the liquid CA and wettability on a solid surface in the air are determined by using Young's equation. Young's equation can be modified for different settings, including the determination of CA of a liquid on a solid surface immersed in a second liquid. The modified equation can be written as:

$$\cos\theta_3 = \frac{\gamma_{o-a}\cos\theta_1 - \gamma_{w-a}\cos\theta_2}{\gamma_{o-w}} \tag{1}$$

where γ_{o-a} is the oil-air interface tension, θ_1 is the CA of oil in the air, γ_{w-a} is the water-air interface tension, θ_2 is the CA of water in the air, γ_{o-w} is oil-water interface tension, and θ_3 is the CA of oil in water.

Table S1 lists the CA of different oils/non-polar liquids on GO-coated glass slide, bare mesh, GO-coated mesh, and GO*-coated mesh. Based on the γ_{w-a} , γ_{o-a} , and γ_{o-w} for Edible oil, toluene, and kerosene, we calculated the values of θ_3 using equation 1 (values mentioned in Table S1). As equation 1 based on Young's equation is for solid substrates, for GO-coated glass slide, we observed that equation 1 predicts the underwater CA for all oils/non-polar liquids, $\theta_3 > 100^\circ$. This shows that GO-coated surfaces show oleophobic nature underwater. In case of bare mesh, GO-coated mesh and GO*-coated mesh, due to porosity, the liquid drops permeate through the mesh over different periods of time depending on wettability. As θ_2 varies due to porosity, the use of equation 1 will not give accurate values. We still have used the initial CA values to predict θ_3 values on meshes, as mentioned in Table 1, using equation 1. The calculated values of θ_3 show that with a decrease in the value of θ_2 , the value of θ_3 increases. Thus, a more hydrophilic surface in the air will show better oleophobicity underwater.

Table S1: CA in air for different test liquids on GO coated surfaces/n	neshes.
--	---------

	GO- Coated			
Test Liquid	glass slide	Bare mesh	GO-coated mesh	GO*-coated mesh
Water $\gamma_{w-a} =$ 72.8mN/m	$\theta_2 = 59.8^\circ \pm 3^\circ$	$\theta_2 = 92.7^\circ \pm 1.6^\circ$	$\theta_2 = 81.3^\circ \pm 2.2^\circ$ (initial CA)	$\theta_2 = 74.3^\circ \pm 2^\circ$ (initial CA)
Edible oil $\gamma_{o-a} = 31.5$ mN/m $\gamma_{o-w} = 37.04$ mN/m	$\theta_1 = 31.9^\circ \pm 0.1^\circ$ $\theta_3 = 105.5^\circ$	$\theta_1 = 21.8^\circ \pm 0.2^\circ$ (initial CA) $\theta_3 = 28.1^\circ$	$\theta_1 = 60.9^\circ \pm 1.9^\circ$ (initial CA) $\theta_3 = 83.3^\circ$	$\theta_1 = 74.5^\circ \pm 0.5^\circ$ (initial CA) $\theta_3 = 107.7^\circ$
Toluene $\gamma_{o-a} = 28.4$ mN/m $\gamma_{o-w} = 36.1$ mN/m	$\theta_1 = 10.5^\circ \pm 0.6^\circ$ $\theta_3 = 103.9^\circ$	$\theta_1 = 0^\circ$ (immediate spreading) $\theta_3 = 28.1^\circ$	$\theta_1 = 0^\circ$ (immediate spreading) $\theta_3 = 61.2^\circ$	$\theta_1 = 0^\circ$ (immediate spreading) $\theta_3 = 76.1^\circ$
Kerosene $\gamma_{o-a} = 28.3$ mN/m $\gamma_{o-w} = 39.9$ mN/m	$\theta_1 = 13.5^\circ \pm 0.1^\circ$ $\theta_3 = 103.2^\circ$	$\theta_1 = 0^\circ$ (immediate spreading) $\theta_3 = 37.3^\circ$	$\theta_1 = 0^\circ$ (immediate spreading) $\theta_3 = 64.3^\circ$	$\theta_1 = 0^\circ$ (immediate spreading) $\theta_3 = 77.6^\circ$