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1. Other details of the coincidence site lattice (CSL) theory for WS2 
 

   
Figure S1. (a) The CSL cell size as a function of the misorientation angles. (b) Periodicity length as a function of 
misorientation angles. The systems are grouped based on the GB families 𝑛𝑛𝑑𝑑.  
 
 
2. First-principle simulation details 

The first-principle simulations are mainly performed using the SIESTA code [1]. The electron-ion interaction is 
represented by pseudopotentials in the norm-conserving method. The valence electrons of W 5d46s2 and S 3s23p4 
are explicitly considered. For the basis set, the single-zeta (SZ) basis is used for the structural relaxation, and the 
“standard” choice of double-zeta plus polarization (DZP) is later adopted for calculating the electronic properties. 
Exchange-correlation functional is in the form of Perdew-Burke-Ernzerhof [2] generalized gradient approximation. 
Structural optimization is the key to getting the low-energy motifs of the GB models. It is a difficult task and is 
performed carefully. The convergence criteria are 0.1 eV/Å for the force on atoms.  

For cross-checking, calculations are also performed for a few selected systems using the all-electron FHI-aims 
code [3]. Formation energies from Siesta and FHI-aims code, shown in Figure S2, agree well with each other.    

 
Figure S2. Formation energies of a few selected GB models. The results by the Siesta and FHI-aims are compared.  
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3. Relaxed structural models 
3.1. The family of 𝒏𝒏𝒏𝒏 = 𝟏𝟏 

 
Figure S3-1-1. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 1.297°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 277.35 Å and 𝑏𝑏 = 139.81 Å.  
 

 
Figure S3-1-2. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 2.134°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 169.08 Å and 𝑏𝑏 = 85.01 Å. 
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Figure S3-1-3a. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 3.481°. The distorted dislocations 
are 4|6 and 6|8 rings. The relaxed simulation cell sizes are 𝑎𝑎 = 103.75 Å and 𝑏𝑏 = 52.10 Å. 
 
 

 
Figure S3-1-3b. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 3.481°. The distorted dislocations 
are 5|7 rings. The relaxed simulation cell sizes are 𝑎𝑎 = 104.15 Å and 𝑏𝑏 = 52.10 Å. 
 
 

 
Figure S3-1-4. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 5.086°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 142.75 Å and 𝑏𝑏 = 35.65 Å. 
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Figure S3-1-5a. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 7.341°. The distorted dislocations 
are 4|6 and 6|8 rings. The relaxed simulation cell sizes are 𝑎𝑎 = 98.92 Å and 𝑏𝑏 = 24.74 Å. 
 
 
 

 
Figure S3-1-5b. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 7.341°. The distorted dislocations 
are 5|7 rings. The relaxed simulation cell sizes are 𝑎𝑎 = 98.60 Å and 𝑏𝑏 = 24.75 Å. 
 
 
 

 

Figure S3-1-6. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 9.430°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 76.83 Å and 𝑏𝑏 = 19.26 Å. 
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Figure S3-1-7. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 13.174°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 82.58 Å and 𝑏𝑏 = 13.81 Å. 
 
 

 
Figure S3-1-8. GB model of family 𝑛𝑛𝑑𝑑 = 1 and misorientation angle 𝜃𝜃 = 21.787°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 67.55 Å and 𝑏𝑏 = 8.38 Å. 
 
 
 
 
3.2. The family of 𝒏𝒏𝒏𝒏 = 𝟐𝟐 
 

 
Figure S3-2-1. GB model of family 𝑛𝑛𝑑𝑑 = 2 and misorientation angle 𝜃𝜃 = 4.723°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 152.44 Å and 𝑏𝑏 = 76.83 Å. 
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Figure S3-2-2. GB model of family 𝑛𝑛𝑑𝑑 = 2 and misorientation angle 𝜃𝜃 = 6.609°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 109.10 Å and 𝑏𝑏 = 54.89 Å. 
 

 
Figure S3-2-3. GB model of family 𝑛𝑛𝑑𝑑 = 2 and misorientation angle 𝜃𝜃 = 8.256°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 86.45 Å and 𝑏𝑏 = 44.02 Å. 
 

 
Figure S3-2-4. GB model of family 𝑛𝑛𝑑𝑑 = 2 and misorientation angle 𝜃𝜃 = 10.993°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 131.18 Å and 𝑏𝑏 = 33.08 Å. 
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Figure S3-2-5. GB model of family 𝑛𝑛𝑑𝑑 = 2 and misorientation angle 𝜃𝜃 = 16.426°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 87.74 Å and 𝑏𝑏 = 22.19 Å. 
 

 
Figure S3-2-6. GB model of family 𝑛𝑛𝑑𝑑 = 2 and misorientation angle 𝜃𝜃 = 32.204°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 90.42 Å and 𝑏𝑏 = 11.41 Å. 
 
3.3. The family of 𝒏𝒏𝒏𝒏 = 𝟑𝟑 

 
Figure S3-3-1. GB model of family 𝑛𝑛𝑑𝑑 = 3 and misorientation angle 𝜃𝜃 = 8.613°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 145.32 Å and 𝑏𝑏 = 63.25 Å. 
 

 
Figure S3-3-2. GB model of family 𝑛𝑛𝑑𝑑 = 3 and misorientation angle 𝜃𝜃 = 11.635°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 107.77 Å and 𝑏𝑏 = 46.89 Å. 
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Figure S3-3-3. GB model of family 𝑛𝑛𝑑𝑑 = 3 and misorientation angle 𝜃𝜃 = 15.178°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 82.37 Å and 𝑏𝑏 = 36.01 Å. 
 

 

Figure S3-3-4. GB model of family 𝑛𝑛𝑑𝑑 = 3 and misorientation angle 𝜃𝜃 = 17.897°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 69.97 Å and 𝑏𝑏 = 30.59 Å. 
 

 

Figure S3-3-5. GB model of family 𝑛𝑛𝑑𝑑 = 3 and misorientation angle 𝜃𝜃 = 27.796°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 67.97 Å and 𝑏𝑏 = 19.76 Å. 
 

 
Figure S3-3-6. GB model of family 𝑛𝑛𝑑𝑑 = 3 and misorientation angle 𝜃𝜃 = 38.213°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 99.66 Å and 𝑏𝑏 = 14.49 Å. 
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3.4. The family of 𝒏𝒏𝒏𝒏 = 𝟒𝟒 

 

Figure S3-4-1. GB model of family 𝑛𝑛𝑑𝑑 = 4 and misorientation angle 𝜃𝜃 = 18.734°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 76.79 Å and 𝑏𝑏 = 38.60 Å. 
 

 
Figure S3-4-2. GB model of family 𝑛𝑛𝑑𝑑 = 4 and misorientation angle 𝜃𝜃 = 26.008°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 111.38 Å and 𝑏𝑏 = 28.13 Å. 
 

 
Figure S3-4-3. GB model of family 𝑛𝑛𝑑𝑑 = 4 and misorientation angle 𝜃𝜃 = 42.103°. The relaxed simulation cell 
sizes are 𝑎𝑎 = 104.65 Å and 𝑏𝑏 = 17.62 Å. 
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4. Weak magnetic instability 

Magnetic moment could be strongly underestimated by the conventional LDA and GGA functional due to 
the well-known self-interaction error. This is significantly improved by the recently-developed SCAN (stands for 
Strongly Constrained and Appropriately Normed [5])meta-GGA, as established in our previous work in 
transition-metal mono-oxides [4]. Here, we use SCAN implemented in FHI-aims [3] to evaluate the magnetic 
moments of two systems.  

 
Figure S4. Magnetic moments calculated using the SCAN meta-GGA for two GB models. (a) Family 𝑛𝑛𝑑𝑑 = 1 and the 
misorientation angle 𝜃𝜃 = 7.341°  . (b) Family 𝑛𝑛𝑑𝑑 = 4  and the misorientation angle 𝜃𝜃 = 42.103° . The 
magnetic moments of W atoms are shown in the unit of µB.  
 
 
 
 
 
 
 
5. Deriving the critical angle by fitting to the Read-Shockley relation 

 

Carlsson et al. calculated the formation energies of graphene GBs [6], covering various misorientation 
angles in the range 0° < 𝜃𝜃 ≤ 60°. They found the Read-Shockley relation for low-angle GBs [7] is valid up to 
𝜃𝜃𝑐𝑐 = 12°. However, we argue that the critical angle could be extended to a higher value of 𝜃𝜃𝑐𝑐 ≈ 20°, as shown 
in Figure S5(a). Too strict fitting criteria might have been used in Ref [6]. Following the same approach, we 
derive a critical angle of 𝜃𝜃𝑐𝑐 ≈ 14° for the WS2-GBs [Figure S5(b)].  
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Figure S5. Agreement of the calculated data with the Read-Shockley relation. (a) Graphene results fitted up to the 
angle 𝜃𝜃 = 18.73°. (b) WS2 results fitted up to 𝜃𝜃 = 13.17°.  
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