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1. Other details of the coincidence site lattice (CSL) theory for WS;
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Figure S1. (a) The CSL cell size as a function of the misorientation angles. (b) Periodicity length as a function of
misorientation angles. The systems are grouped based on the GB families n,.

2. First-principle simulation details

The first-principle simulations are mainly performed using the SIESTA code [1]. The electron-ion interaction is
represented by pseudopotentials in the norm-conserving method. The valence electrons of W 5d*6s? and S 3s23p*
are explicitly considered. For the basis set, the single-zeta (SZ) basis is used for the structural relaxation, and the
“standard” choice of double-zeta plus polarization (DZP) is later adopted for calculating the electronic properties.
Exchange-correlation functional is in the form of Perdew-Burke-Ernzerhof [2] generalized gradient approximation.
Structural optimization is the key to getting the low-energy motifs of the GB models. It is a difficult task and is
performed carefully. The convergence criteria are 0.1 eV/A for the force on atoms.

For cross-checking, calculations are also performed for a few selected systems using the all-electron FHI-aims
code [3]. Formation energies from Siesta and FHI-aims code, shown in Figure S2, agree well with each other.
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Figure S2. Formation energies of a few selected GB models. The results by the Siesta and FHI-aims are compared.
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3. Relaxed structural models

3.1. The familyof n; =1
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sizesare a = 277.35A and b = 139.81 A.

ﬂw_xﬁ}ﬂuﬁ%& f»mmw

wﬂﬁ.ﬂf Jibt&i<{<.<,<{ﬁ4>«f

&
'

1X. SO0 08 ”\j\«
'R S T O

3 . < (Jﬁu\, ot gty ﬁ{{
N RjiRseseiesepsns
1N ) N Og g to o e Sy
A i X o~

1,0

1, 6=
£33
bot
gﬁ
%<
L
o x<:

xﬂ\%ox»{., Y bpbﬁﬂ«u 0 ; = oAl o]
15 W b W\V{W ﬂi&iﬂmhuﬁﬂ&} : .U«W«, 1]
E=a c v «f;%ﬂw%&«ym%(( K{.t( C
T B s 9( DB Q b{\“W\p 44

Figure $3-1-1. GB model of family ng,
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1 and misorientation angle 8 = 2.134 . The relaxed simulation cell
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sizesare a = 169.08 A and b = 85.01 A.

Figure S3-1-2. GB model of family n,



nd=1, 6=3.481, a

Figure $3-1-3a. GB model of family ny; = 1 and misorientation angle 8 = 3.481°. The distorted dislocations
are 4|6 and 6|8 rings. The relaxed simulation cell sizes are a = 103.75 A and b =52.10A.

Figure $3-1-3b. GB model of family ng; = 1 and misorientation angle 8 = 3.481". The distorted dislocations
are 5|7 rings. The relaxed simulation cell sizes are a = 104.15 A and b =52.10A.

Figure $3-1-4. GB model of family ngy = 1 and misorientation angle 6 = 5.086°. The relaxed simulation cell
sizesare a = 142.75 A and b = 35.65 A.
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Figure $3-1-5a. GB model of family ny; = 1 and misorientation angle 8 = 7.341°. The distorted dislocations
are 4|6 and 6|8 rings. The relaxed simulation cell sizes are a = 98.92 & and b = 24.74 A.

nd=1, 0=7.341, B

Figure $3-1-5b. GB model of family ng; = 1 and misorientation angle 8 = 7.341". The distorted dislocations
are 5|7 rings. The relaxed simulation cell sizes are a = 98.60 A and b =24.75A.

Figure $3-1-6. GB model of family ngy = 1 and misorientation angle 6 = 9.430°. The relaxed simulation cell
sizesare a = 76.83 A and b = 19.26 A.
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nd=1, 0=13.174 }
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Figure $3-1-7. GB model of family n; = 1 and misorientation angle 8 = 13.174°. The relaxed simulation cell
sizesare a = 82.58 & and b = 13.81 A.
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Figure $3-1-8. GB model of family n; = 1 and misorientation angle 8 = 21.787°. The relaxed simulation cell
sizesare a = 67.55A and b = 8.38A.
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3.2. The family of n; = 2
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Figure $3-2-1. GB model of family ng; = 2 and misorientation angle 6 = 4.723". The relaxed simulation cell
sizesare a = 152.44 A and b = 76.83 A.
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Figure $3-2-2. GB model of family ngy = 2 and misorientation angle 6 = 6.609°. The relaxed simulation cell
sizesare a = 109.10 A and b = 54.89 A.
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Figure $3-2-3. GB model of family ng; = 2 and misorientation angle 6 = 8.256°. The relaxed simulation cell
sizesare a = 86.45 A and b = 44.02 A.
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Figure $3-2-4. GB model of family n; = 2 and misorientation angle 8 = 10.993°. The relaxed simulation cell
sizesare a =131.18 A and b = 33.08 A.
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Figure $3-2-5. GB model of family n; = 2 and misorientation angle 8 = 16.426°. The relaxed simulation cell
sizesare a = 87.74 A and b =22.19A.
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Figure $3-2-6. GB model of family n; = 2 and misorientation angle 8 = 32.204°. The relaxed simulation cell
sizesare a =90.42 A and b =11.414A.

3.3. The family of n; =3
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Figure $3-3-1. GB model of family ng; = 3 and misorientation angle 6 = 8.613". The relaxed simulation cell
sizesare a = 145.32 A and b = 63.25 A.
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Figure $3-3-2. GB model of family n; = 3 and misorientation angle 8 = 11.635’. The relaxed simulation cell
sizesare a =107.77 A and b = 46.89 A.
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Figure $3-3-3. GB model of family n; = 3 and misorientation angle 8 = 15.178°. The relaxed simulation cell
sizesare a = 82.37 A and b =36.01A.

Figure $3-3-4. GB model of family n; = 3 and misorientation angle 8 = 17.897°. The relaxed simulation cell
sizesare a = 69.97 A and b = 30.59 A.

Figure $3-3-5. GB model of family n; = 3 and misorientation angle 8 = 27.796°. The relaxed simulation cell
sizesare a = 67.97 A and b =19.76 A.
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Figure $3-3-6. GB model of family n; = 3 and misorientation angle 8 = 38.213". The relaxed simulation cell
sizesare a =99.66 A and b = 14.49 A.
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3.4. The family of n; = 4

L ol
nd=4, 6=18.734

Figure $3-4-1. GB model of family n; = 4 and misorientation angle 8 = 18.734°. The relaxed simulation cell
sizesare a = 76.79 A and b = 38.60 A.

nd=4, 6=26.008

Figure $3-4-2. GB model of family n; = 4 and misorientation angle 8 = 26.008°. The relaxed simulation cell
sizesare a =111.38A and b = 28.13 A.

nd=4, 6=42.103

Figure $3-4-3. GB model of family n; = 4 and misorientation angle 8 = 42.103". The relaxed simulation cell
sizesare a = 104.65A and b = 17.62 A.
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4. Weak magnetic instability

Magnetic moment could be strongly underestimated by the conventional LDA and GGA functional due to
the well-known self-interaction error. This is significantly improved by the recently-developed SCAN (stands for
Strongly Constrained and Appropriately Normed [5])meta-GGA, as established in our previous work in
transition-metal mono-oxides [4]. Here, we use SCAN implemented in FHI-aims [3] to evaluate the magnetic
moments of two systems.
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Figure S4. Magnetic moments calculated using the SCAN meta-GGA for two GB models. (a) Family n; = 1 and the
misorientation angle 6 = 7.341°. (b) Family ng = 4 and the misorientation angle 6 = 42.103°. The

magnetic moments of W atoms are shown in the unit of .
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5. Deriving the critical angle by fitting to the Read-Shockley relation

Carlsson et al. calculated the formation energies of graphene GBs [6], covering various misorientation
angles in the range 0° < 6 < 60°. They found the Read-Shockley relation for low-angle GBs [7] is valid up to
6. = 12°. However, we argue that the critical angle could be extended to a higher value of 6, =~ 20°, as shown
in Figure S5(a). Too strict fitting criteria might have been used in Ref [6]. Following the same approach, we
derive a critical angle of 6, = 14° for the WS,-GBs [Figure S5(b)].
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(a) Graphene, fitting up to 6=18.73°
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Figure S5. Agreement of the calculated data with the Read-Shockley relation. (a) Graphene results fitted up to the
angle 6 = 18.73". (b) WS; results fitted up to 8 = 13.17".
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