
Atomic scale insights into the epitaxial growth mechanism of 2D $\mbox{Cr}_3\mbox{Te}_4$ on mica

Supplementary Information

Hailin Yang,^a An Wu,^a Huaxin Yi,^a Weiwei Cao,^a Jiandong Yao,^a Guowei Yang,^a and Yi-Chao Zou^{*a}

^aSchool of Materials Science & Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Sun Yat-sen University, Guangzhou, 510275, P. R. China

Fig. S1 Optical images taken from typical Cr_3Te_4 samples obtained by various growth temperatures, for a growth temperature (T) of 660°C (a), 680°C (b), and 700°C (c), respectively. The thickness of the nanoplate shown is ~15 nm in S1a, ~37 nm in S1b, and ~80 nm in S1c. This indicates that the thickness of the nanoplate can be reduced by a decreased growth temperature in the chemical vapour deposition process.