Cu₂O/Co₃O₄ Nanoarrays for Rapid Quantitative Analysis of

Hydrogen Sulfide in Blood

Manli Lu, [†]^a Xiaomeng Zhu, [†]^a Haoming Sun ^{ab} Huijuan Chen ^a Kaifeng Xue ^a Lulu Du ^a Liyuan Cui ^c Pinhua Zhang, ^{*}^a Dongchao Wang, ^{*}^a Guangliang Cui, ^{*}^a

a. School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China

b. School of Mechanical Engineering, Dalian Jiaotong University, Dalian, 116028, China

^{c.} Linyi People's hospital, Linyi 276000, Shandong, China.

*Corresponding authors

[†] These authors contributed equally to this article.

E-mail addresses: zhangpinhua@lyu.edu.cn (P. Zhang), wangdongchao@lyu.edu.cn (D. Wang), cuiguangliang@lyu.edu.cn (G. Cui).

1. Experimental Section

Sensing Measurement

Fig. S1. Schematic sensing measuring system

Fig.S1 shows the sensing measuring system, which uses the four-probe assembly to test the response of the sensor. The diameter of each probe is 2 mm, and the distance between the center of the two probes is 2 mm. The Vaseline coating is 1mm wide and 15 mm long, with a test area (1 mm \times 15 mm) between the two vaseline coatings. Press the probe onto the uncoated end (3 mm). After adding the liquid to be measured (1 μ L), a source meter is used to record the response of the sensor.

2. The process of increasing H₂S concentration in human blood samples

First take 200 μ L blood, and then add 2 μ L Na₂S solution of different concentrations. For example, if the H₂S concentration increases by 10 μ M, 1.01 mM Na₂S solution shall be added.

3. The purpose of adding nitric acid

In the deposition process, hydroxide was first formed on the front of the deposit due to its lowest deposition potential¹. The reaction can be written as equation (1). Hydroxide was involved in the whole deposition process of Cu_2O and Co_3O_4 as the source of oxygen. Copper and cobalt ions were driven by the electric field to the cathode, where they were reduced and deposited on the surface at lower and upper parts of the half-sine wave, as described in equation (2) and (3).

$$NO_3^- + H_2O + 2e^- \rightarrow NO_2^- + 2OH^- \tag{1}$$

$$2Cu^{2+} + 2OH^{-} + 2e^{-} \rightarrow Cu_2O + H_2O \tag{2}$$

$$3Co^{2+} + 8OH^{-} \rightarrow Co_3O_4 + 4H_2O + 2e^{-} \tag{3}$$

Here, the nitric acid dropped into the solution is not only involved in the chemical reaction, but also plays a role in the process of increasing the conductivity of the solution and promoting the deposition of ions.

4. Computational details

The first-principles calculations based on density-functional theory (DFT) were performed by the Vienna ab initio simulation package (VASP)², using the projectoraugmented-wave potential³. The Perdew-Burke-Ernzerhof (PBE)⁴ generalized gradient approximation (GGA) was used to describe the exchange-correlation potential. The kinetic energy cutoff is set to 400 eV and the convergence threshold for energy is 10^{-5} eV. All atom positions are fully optimized until the forces on each atom is less than 0.02 eV/Å. A grid of $17 \times 17 \times 17$ Monkhorst-Pack k-point is used to optimize bulk unit cell. The Brillouin zone integration is performed with a $7 \times 7 \times 1$ k-mesh for geometry optimization and self-consistent calculations. To simulate isolated thin films, a sufficiently large vacuum space of 15 Å is used to rule out any interactions between the neighboring films. The adsorption energies of H₂S adsorbed on Cu₂O and Co₃O₄ are calculated as follows:

$$E_{ads} = E_{H_2S/X} - E_X - E_{H_2S}$$

where $E_{H_2S/X}$ and E_{H_2S} are the total energies of H₂S adsorbed on Cu₂O (Co₃O₄) and the

free H₂S gas molecules and E_X is the energy of Cu₂O (Co₃O₄).

5. References

- 1. G. Cui, M. Zhang, G. Zou, Sci. Rep, 2013, 3, 1-8.
- 2. G. Kresse, J. Furthmuller, Phys. Rev, 1996, 54, 11169.
- 3. G. Kresse, D. Joubert, Phys. Rev, 1999, 59, 1758.
- 4. J. P. Perdew, K. Burke, Phys. Rev, 77, 3865.