Supporting Information

Revisiting the Roles of Dopant on g-C3N⁴ Nanostructures for Piezo-

photocatalytic Production of H2O2: A Case Study of Selenium and Sulfur

Dat Do Tran^{1,2,3,+}, Hoai-Thanh Vuong^{1,2,3,4,+}, Duc-Viet Nguyen^{1,2,3,5}, Pho Phuong Ly^{1,2,3},

Pham Duc Minh Phan^{1,2,3}, Vu Hoang Khoi^{1.2.3.5}, Phong Thanh Mai^{1,2,3}, and Nguyen Huu

 $Heu^{1,2,3,*}$

¹VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key

CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

²Faculty of Chemical Engineering, Ho Chi Minh City University of Technology

(HCMUT)

268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

³Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam

⁴ Department of Chemistry and Biochemistry, University of California Santa Barbara (UCSB), Santa Barbara, California 93106, USA

⁵School of Chemical Engineering, University of Ulsan, Ulsan, South Korea

*Corresponding author's contact: nhhieubk@hcmut.edu.vn

Materials

Melamine $(C_3H_6N_6)$, urea (CH₄N₂O), thiourea (SC(NH₂)₂), sulfur powder (S powder), selenium powder (Se powder), selenium dioxide $(SeO₂)$, isopropanol (IPA), potassium iodide (KI), potassium hydrogen phthalate ($C_8H_5KO_4$), ammonium chloride (NH₄Cl), benzoquinone (BQ), and methanol (CH3OH), were purchased from Xilong Scientific, China. Distilled water was used in the whole research. All chemicals were directly utilized without any purifications. The fabricated materials were named SCN, p-SCN, p-SeCN, and SeCN for the use of thiourea, sulfur power, selenium power, and SeO_2 as doping precursors, respectively. g-C₃N₄ was prepared by the same method without the presence of other agents and denoted as GCN.

Characterization

The optical features of all materials were computed by UV-vis diffuse reflectance spectroscopy (UV-DRS). The characteristic crystal structure of materials was characterized by X-ray diffraction (XRD). The morphologies of materials were also examined by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Furthermore, the surface charge and conductivity of the materials were detected by zeta potential measurements. The BET and Barret-Joyner-Halender (BJH) methods were carried out using N_2 adsorption-desorption measurements to determine the specific surface area, pore size, and pore volume of all samples. Thermogravimetric analysis (TGA) was obtained to analyze the thermal stability of materials. Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance spectroscopy (ssNMR) were employed to characterize functional groups and molecular structure. In addition, XPS was performed to determine the chemical states with the spectra of all samples. In order to analyze the recombination of charges and the charge transfer resistance, photoluminescence (PL) spectra and electrochemical impedance spectroscopy (EIS) were utilized. XPS-VB spectra were conducted to identify the valance band (VB) edge of the materials and Mott-Schottky plots were used to confirm the position of the flat-band potential of the materials. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were also performed in the study to study the electrocatalytic properties of the materials.

Time: 180 min

Atmosphere: O₂

Time: 180 min

B and O co-	300 W Xenon lamp	Catalyst: 40 mg	620	
doped		Solvent: Water	μ mol g ⁻¹ h ⁻¹	
$g - C_3 N_4$		SA: Ethanol		$[11]$
		Atmosphere: O_2		
		Time: 150 min		
O doped $g - C_3 N_4$	300 W Xenon lamp	Catalyst: 50 mg	2008.4	$[12]$
		Solvent: Water	μ mol g ⁻¹ h ⁻¹	
		SA: Isopropanol		
		Atmosphere: O_2		

Table S2. Elemental percentage as-prepared samples

^aData was obtained from XPS results

^bData was obtained from ICP-MS results

Samples	Zeta potential (mV)	Conductivity (mS/cm)	Surface Active Area $(m^2 g^{-1})$	Pore Volume $(cm3 g-1)$	Average Pore Size (nm)	d-spacing (nm)		Average
						(100)	(002)	Crystallite Site (nm)
GCN	-31.6	0.00604	51.136	0.222	3.4710	0.679	0.326	3.939
SCN	-28.2	0.00824	57.224	0.277	3.5628	0.684	0.323	9.198
p-SCN	-34.4	0.0057	54.822	0.243	3.5199	0.684	0.322	10.490
p-SeCN	-34.3	0.0449	52.142	0.268	3.4657	0.690	0.323	9.642
SeCN	-31.2	0.00810	58.076	0.304	4.0406	0.690	0.323	9.664

Table S3. Physical properties of all samples

Table S4. Calculations of the delocalized π-π* electron systems based on XPS data

Sample	$(\pi$ - $\pi^*)$ /C _{total}	$(\pi-\pi^*)/N_{\text{total}}$	$N-(C_3)/C=N-C$
GCN	0.046	0.083	0.199
SCN	0.046	0.212	0.199
p-SCN	0.078	0.084	0.346
p-SeCN	0.059	0.059	0.341
SeCN	0.058	0.079	0.265

Table S5. Electronic properties of as-synthesized materials

^a Data and values were exported and computed from XPS-VB results

^b Data and values were exported and computed from Mott Schottky plots

Fig. S1. XRD patterns of as-prepared materials from 10 to 16 degree (a), and from 24 to 30

degree (b)

Fig. S2. N₂ adsorption-desorption isotherms of samples and (b) the pore size distribution curves of GCN, SCN, p-SCN, p-SeCN, and SeCN

Fig. S3. TGA curves for GCN, SCN, p-SCN, p-SeCN, and SeCN

Fig. S4. FTIR (a) and ¹³C solid-state NMR (b) and (c) spectra of the materials

Fig. S5. XPS survey spectra of materials

Fig. S7. Bandgap energy of SCN (a), p-SCN (b), and p-SeCN (c)

Fig. S8. PL energy of GCN (a), SCN (b), p-SCN (c), and p-SeCN (d)

Fig. S9. EIS of GCN, SCN, p-SCN, p-SeCN, and SeCN

Fig. S10. XPS-VB and Mott Schottky plots of (a-b) GCN, (c-d) SCN, (e-f) p-SCN, and (g-h) p-SeCN

Fig. S11. CV curves of GCN (a), SCN (b), p-SCN (c), and p-SeCN (d)

Fig. S12. LSV curves of GCN (a), SCN (b), p-SCN (c), and p-SeCN (d)

Fig. S13. (a) Piezo-photocatalytic H_2O_2 production of as-prepared samples and (b) the

cycle test of 50 mg of SeCN under 1 h irradiation

Fig. S14. Piezo-photocatalytic results of SeCN with the presence of a scavenger

References

[1] Samanta, S.; Yadav, R.; Kumar, A.; Sinha, A. K.; and Srivastava, R*Appl. Catal. B*, 2019, **259**, 118054.

[2] Liu, Y.; Zheng, Y.; Zhang, W.; Peng, Z.; Xie, H.; Wang, Y.; Huang, Y. *J. Mater. Sci. Technol.*, 2021, **95**, 127-135.

[3] Hu, J.; Zhang, P.; Yang, T.; Cai, Y.; Qu, J.; Yang, X. *Appl. Surf. Sci.*, 2022, **576**, 151841.

[4] Deng, L.; Sun, J.; Sun, J.; Wang, X.; Shen, T.; Zhao, R.; Wang, B. *Appl. Surf. Sci.*, 2022, 153586.

[5] Zhang, C.; Bai, J.; Ma, L.; Wang, F.; Zhang, X.; Hu, S. *Diamond Relat. Mater.*, 2018, **87**, 215-222.

[6] Zhou, L.; Feng, J.; Qiu, B.; Zhou, Y.; Lei, J., Xing; Zhang, J. *Appl. Catal. B*, 2020, **267**, 118396.

[7] Zhang, Z.; Zheng, Y.; Xie, H.; Zhao, J.; Guo, X.; Zhang, W.; Huang, Y. *J. Alloys Compd.*, 2022, **904**, 164028.

[8] Zhang, H.; Jia, L.; Wu, P.; Xu, R.; He, J.; Jiang, W. *Appl. Surf. Sci.*, 2020, **527**, 146584.

[9] Fattahimoghaddam, H.; Mahvelati-Shamsabadi, T.; Jeong, C. S.; Lee, B. K. *J. Colloid Interface Sci.*, 2022, **617**, 326-340.

[10] Li, D.; Wen, C.; Huang, J.; Zhong, J.; Chen, P.; Liu, H.; Liu, G. *Appl. Catal. B*, 2022, **307**, 121099.

[11] You, Q.; Zhang, C.; Cao, M.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. *Appl. Catal. B*, 2023, **321**, 121941.

[12] Xie, H.; Zheng, Y.; Guo, X.; Liu, Y.; Zhang, Z.; Zhao, J.; Huang, Y. *ACS Sustainable Chem. Eng.*, 2021, **9**, 6788-6798.