Dual fluorescence hollow silica nanofibers for *in situ* pH monitoring using an optical fiber

Junhu Zhou[‡], Yundong Ren[‡], Yuan Nie, Congran Jin, Jiyoon Park, John X.J. Zhang*

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA

*Corresponding author: John.Zhang@Dartmouth.edu

Tel: (603) 646-8787. Fax: (603) 646-9024

*‡*These authors have contributed equally to this work.

Fig. S1 The pH response of the dual fluorescence hSNFs. The individual optical spectra measured in colorless pH 4.0 (a), pH 5.0 (b), pH 6.0 (c), pH 7.0 (d), pH 8.0 (e), pH 9.0 (f) buffer solutions with error bars (the shaded area).

Fig. S2 Effect of storage on stability of the dual fluorescence hSNFs. (a) The optical spectra of the dual fluorescence hSNFs in pH 8.0 buffer solution after storage in dark for one month. The inserted figure represents the $I_{FITC/}I_{Ru(BPY)_3}$ ratio. (b) The image of the dual fluorescence hSNFs in ethanol after storage in dark for one month.

Fig. S3 The optical spectra of real samples with error bars (the shaded area). (a) The optical spectra of tap water. (b) The optical spectra of meltwater. (c) The optical spectra of cell culture media at different days.

Fig. S4 Tiny sample size testing. (a) The optical spectra of 50 μ L hiPSC-CMs culture media at day 6. The inserted figure represents the $I_{FITC}/I_{Ru(BPY)_3}$ ratio. (b) The image of the experimental setup. (c) The microscope image of the tilted optical fiber tip positioned above the hSNFs in the 50 μ L sample solution.

	Tsou	Chen	Song	Fulaz	Tsou	Hu	Shangguan	Yuan	Gotor	_	This are als
Reference	et al. ¹	et al. ²	et al. ³	et al.4	et al. ⁵	et al.6	et al.7	et al.8	et al.9		I his work
Year	2013	2015	2017	2019	2014	2015	2016	2020	2017		2022
Device	Confocal microscopy		Fluorescer	Fluorescence microscope		Fluorometer				_	Fiber-optic spectrometer
System	2 dyes in	Small	Carbon	2 dyes in	2 dyes in	2 dyes in	Carbon	Small	13 dyes on		2 dyes in
	nanoparticles	molecular	dots	nanoparticles	nanoparticles	nanoparticles	dots	molecular	strip		nanofibers
Portability	Low	Low	Low	Low	Low	Low	Low	Low	High		High
Excitation light	3	2	1	2	2	2	1	1	11		1
pH range	4.5-8.5	6.18-8.38	1.5-5.0	3.5-8.5	3.2–9.0	3.8-7.4	5.2-8.8	3.0-5.5	0-14		4.0-9.0
Linearity	Fair	Fair	Good	Fair	Fair	Fair	Good	Good	Good		Good
Reversibility	n/a	Yes	Yes	Yes	n/a	n/a	Yes	Yes	n/a		Yes
Immobilization	No	No	□ No	No	□ No	No	No	No	□ Yes		Yes

Table S1. Major fluorescent pH sensor developed in recent years

Reference

- 1 C.-J. Tsou, C. Chu, Y. Hung and C.-Y. Mou, J. Mater. Chem. B, 2013, 1, 5557.
- 2 Y. Chen, C. Zhu, J. Cen, Y. Bai, W. He and Z. Guo, *Chem. Sci.*, 2015, 6, 3187–3194.
- 3 W. Song, W. Duan, Y. Liu, Z. Ye, Y. Chen, H. Chen, S. Qi, J. Wu, D. Liu, L. Xiao, C.

Ren and X. Chen, Anal. Chem., 2017, 89, 13626–13633.

4 S. Fulaz, D. Hiebner, C. H. N. Barros, H. Devlin, S. Vitale, L. Quinn and E. Casey, *ACS Appl. Mater. Interfaces*, 2019, **11**, 32679–32688.

5 C.-J. Tsou, Y. Hung and C.-Y. Mou, *Microporous Mesoporous Mater.*, 2014, **190**, 181–188.

S. Hu, L. Sun, M. Liu, H. Zhu, H. Guo, H. Sun and H. Sun, New J. Chem., 2015, 39,
4568–4574.

J. Shangguan, D. He, X. He, K. Wang, F. Xu, J. Liu, J. Tang, X. Yang and J. Huang,
 Anal. Chem., 2016, 88, 7837–7843.

- 8 X. Yuan, T. Zhang, J. Yan, X. Chen, L. Wang, X. Liu, K. Zheng and N. Zhang, *Dye. Pigment.*, 2020, **177**, 108318.
- 9 R. Gotor, P. Ashokkumar, M. Hecht, K. Keil and K. Rurack, *Anal. Chem.*, 2017, 89, 8437–8444.