Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Development of a New Type of Multi-Functional Mechanochromic Luminescence Materials by Infusing a Phenyl Rotator into the Structure of 3,4diphenylmaleic anhydride

Zexin Wang ^{a, b}, Liwei Chen ^b, Xiang Lin ^b, Wei Liu ^b, Jun Han ^c, Nannan Chen ^b, Hong Jiang ^b, Shitao Sun ^a, Zhenli Li ^a, Jinle Hao ^a, Bin Lin ^a, Renfu Li ^d, Xueyuan Chen ^d, Xin Zhai ^{*, a}, and Lijun Xie^{*, b}

^a Key Laboratory of Structure-based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University. Shenyang, Liaoning 110016, P. R. China

^b Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P. R. China

[°]Department of Physics, Southern University of Science and Technology, Huiyuan Bldg 1, 1088 Xueyuan Blvd, Nanshan, Shenzhen 518055, P. R. China

^d CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China

Table of Contents				
Title	Page			
Characterization of compounds	S3			
Solvatochromism of W1 , W4 and W6	S13			
The photophysical data of W1 , W4 and W6 in different solvents	S14			
Aggregation-induced emission of W1 , W4 and W6	S15			
Solid state fluorescence QY of W1, W4 and W6	S15			
The normalized PL intensity of crystals W6R and W6Y	S16			
Molecular conformation of W1, W6R and W6Y	S16			
The ORTEP plot of W6R and W6Y	S18			
Crystal data and structure refinement for W1, W6R and W6Y	S19			
Mechanochromic luminescence of W4 and W6	S22			
Differential scanning calorimetry of W4 and W6	S24			
Sensing properties toward protonic acids of W6	S24			
Vapochromism of W1	S25			
	Title Title Characterization of compounds Solvatochromism of W1, W4 and W6 The photophysical data of W1, W4 and W6 in different solvents Aggregation-induced emission of W1, W4 and W6 Solid state fluorescence QY of W1, W4 and W6 The normalized PL intensity of crystals W6R and W6Y Molecular conformation of W1, W6R and W6Y The ORTEP plot of W6R and W6Y Crystal data and structure refinement for W1, W6R and W6Y Mechanochromic luminescence of W4 and W6 Differential scanning calorimetry of W4 and W6 Sensing properties toward protonic acids of W6 Vapochromism of W1			

Table of Contents

Synthesis of W1. (General procedure) Piperidine, 3 drops, was added to a mixture of 0.140 g (0.0004 mol) of intermediate (**W**) and 0.140 g of 2-Morpholinobezaldehyde in 10 ml of MeOH, and the mixture was stirred at room temperature for 12 h in dark atmosphere. The mixture was then cooled, and the precipitate was filtered off and washed with MeOH. The yellow powder (**W1**, 0.13 g) was obtained with the yield 92%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.14 (d, *J* = 8.3 Hz, 2H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.37 (t, *J* = 8.3 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.23 – 7.14 (m, 3H), 7.12 (d, *J* = 8.0 Hz, 1H), 6.21 (s, 1H), 3.47 (s, 4H), 2.81 (t, *J* = 4.3 Hz, 4H), 2.29 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 168.2, 152.4, 149.0, 147.9, 142.1, 139.3, 136.2, 131.0, 130.8, 130.7, 129.6, 129.2, 128.1, 126.6, 126.3, 125.2, 123.8, 119.7, 109.1, 66.8, 53.1, 43.8, 21.3. HRMS (ESI): calced for C₂₉H₂₇NO₅S: 502.1683 ([M+H]+), found:502.1687.

Figure S1. ¹H NMR spectrum of W1 in DMSO- d_6 (600 MHz, 298K).

Figure S2. ¹³C NMR spectrum of W1 in DMSO- d_6 (151 MHz, 298K).

Synthesis of W2. The orange-red powder (W2, 0.12 g) was synthesized following the the general procedure with the yield 83%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.06 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 8.7 Hz, 2H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 5.97 (s, 1H), 3.73 (s, 4H), 3.34 (s, 3H), 3.25 (s, 4H), 2.28 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 168.2, 151.7, 148.6, 145.4, 141.9, 138.8, 135.9, 132.5, 130.7, 129.4, 129.30, 128.0, 126.7, 123.8, 123.5, 114.6, 114.0, 66.3, 47.4, 43.7, 21.3. HRMS (ESI): calced for C₂₉H₂₇NO₅S: 502.1683 ([M+H]+), found:502.1688.

Figure S5. ¹³C NMR spectrum of W2 in DMSO-*d*₆ (151 MHz, 298K).

Figure S6. HRMS spectrum of W2

Synthesis of W3. The red powder (**W3**, 0.10 g) was synthesized following the general procedure with the yield 72% ¹H NMR (600 MHz, DMSO- d_6) δ 8.06 (d, *J* = 8.2 Hz, 2H), 7.68 (t, *J* = 8.8 Hz, 4H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 5.96 (s, 1H), 3.28-3.38 (m, 4H), 2.44 (s, 4H), 2.28 (s, 3H), 2.22 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 168.3, 151.6, 148.6, 145.3, 141.9, 138.8, 136.0, 132.5, 130.7, 129.4, 129.2, 128.0, 126.7, 123.6, 123.1, 114.7, 114.1, 54.8, 47.0, 46.1, 43.7, 21.3. HRMS (ESI): calced for C₃₀H₃₀N₂O₄S: 515.1999 ([M+H]+), found:515.1998.

Figure S7. ¹H NMR spectrum of W3 in DMSO-*d*₆ (600 MHz, 298K).

Figure S8. ¹³C NMR spectrum of W3 in DMSO-*d*₆ (151 MHz, 298K).

Synthesis of W4. The orange powder (**W4**, 0.12 g) was synthesized following the general procedure with the yield 88%. ¹H NMR (600MHz, DMSO-*d*₆) δ 8.07 (d,*J* = 8.4Hz, 2H), 7.75 – 7.66 (m, 5H), 7.40 – 7.34 (m, 4H), 7.21 (d,*J* = 8.2Hz, 2H), 7.18 – 7.14 (m, 4H), 7.11 (d,*J* = 7.5Hz, 2H), 6.93 (d,*J* = 8.9Hz, 2H), 5.99 (s, 1H), 2.28 (s, 3H). ¹³C NMR(151MHz, DMSO-*d*₆) δ 168.1, 148.7, 148.6, 146.6, 146.3, 142.0, 139.0, 135.8, 132.4, 132.1, 132.0, 130.7, 130.2, 129.5, 129.3, 129.1, 128.0, 126.5, 126.4, 125.7, 124.8, 124.5, 121.2, 113.2, 67.8, 43.7, 30.2, 28.8. HRMS (ESI): calced for C₃₇H₂₉NO₄S: 584.1890 ([M+H]+), found:584.1881.

Figure S11. ¹³C NMR spectrum of **W4** in DMSO-*d*₆ (151MHz, 298K).

Figure S12. HRMS spectrum of W4

Synthesis of W5. The red powder (**W5**, 0.12 g) was synthesized following the general procedure with the yield 88%. ¹H NMR (600 MHz, DMSO- d_6) δ 8.06 (d, J = 8.2 Hz, 2H), 7.76 – 7.53 (m, 4H), 7.20 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.77 (d, J = 8.9 Hz, 1H), 5.95 (s, 1H), 3.32 (s, 3H), 3.01 (s, 6H), 2.27 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 168.3, 151.2, 148.6, 144.5, 141.8, 138.6, 136.1, 132.8, 130.7, 129.4, 129.2, 128.0, 126.9, 122.8, 120.9, 114.8, 112.4, 67.8, 43.7, 30.2, 28.8, 21.3. HRMS (ESI): calced for C₂₇H₂₅NO₄S: 460.1577 ([M+H]+), found:460.1612.

Figure S13. ¹H NMR spectrum of W5 in DMSO-*d*₆ (600 MHz, 298K).

Figure S14. ¹³C NMR spectrum of W5 in DMSO-*d*₆ (151 MHz, 298K).

Figure S15. HRMS spectrum of W5

Synthesis of W6. The orange powder (**W6**, 0.12 g) was synthesized following the general procedure with the yield 83%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.12 (d, *J* = 8.3 Hz, 2H), 8.05 (d, *J* = 9.1 Hz, 1H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.34 (t, *J* = 7.0 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.17 (dd, *J* = 15.5, 7.9 Hz, 3H), 7.08 (d, *J* = 7.8 Hz, 1H), 6.21 (s, 1H), 3.30 (s, 3H), 2.74 (s, 4H), 2.29 (s, 3H), 1.45 – 1.22 (m, 6H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 168.2, 153.8, 149.1, 147.7, 142.1, 139.3, 136.2, 130.9, 130.7, 129.6, 129.2, 128.0, 126.6, 126.3, 125.0, 123.3, 119.8,

109.5, 56.5, 54.1, 43.8, 26.3, 23.9, 21.3, 19.0. HRMS (ESI): calced for $C_{30}H_{29}NO_4S$: 500.1890 ([M+H]+), found:500.1884.

Figure S17. ¹³C NMR spectrum of W6 in DMSO-d₆ (151 MHz, 298K).

Figure S18. HRMS spectrum of W6

Synthesis of W7. The red powder (**W7**, 0.12 g) was synthesized following the general procedure with the yield 85%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.06 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 4H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 6.97 (d, *J* = 9.0 Hz, 2H), 5.95 (s, 1H), 3.34 (s, 3H), 2.27 (s, 4H), 1.59 (s, 6H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 168.3, 151.7, 148.6, 145.0, 141.9, 138.7, 136.0, 132.7, 130.7, 129.4, 129.2, 128.0, 126.8, 123.2, 122.3, 114.7, 114.3, 48.3, 43.7, 25.4, 24.4, 21.3. HRMS (ESI): calced for C₃₀H₂₉NO₄S: 500.1890 ([M+H]+), found:500.1887.

Figure S19. ¹H NMR spectrum of W7 in DMSO-*d*₆ (600 MHz, 298K).

Figure S21. HRMS spectrum of W7

Solvatochromism of W1, W4 and W6

Figure S22. Normalized absorption of compounds (A) W1, (B) W4 and (C) W6 in various solvents at the concentration of 50 μ M, such as DMSO, DMF, chloroform, DCM, EtOH, THF, respectively.

compounds	Solvents	$\lambda_{abs}(nm)^a$	λ _{em} (nm) ^b	∆v (cm⁻¹)º	Stokes shifts (nm) ^d
W1	chloroform	389	600	9040	211
	DCM	392	614	9224	222
	THF	354	620	12120	266
	EtOH	386	646	10427	260
	DMF	356	656	12846	300
	DMSO	358	682	13270	324
W4	chloroform	476	624	4983	148
	DCM	469	644	5894	175
	THF	458	626	5860	168
	EtOH	464	656	6308	192
	DMF	458	676	7041	218
	DMSO	462	690	7152	228
W6	chloroform	352	610	12016	258
	DCM	354	630	12376	276
	THF	354	628	12325	274
	EtOH	356	654	12799	298
	DMF	352	674	13572	322
	DMSO	354	690	13756	336

Table S1. The photophysical data of W1, W4 and W6 in different solvents

^a Absorption maxima, ^b PL intensity maxima, ^c Δν, were calculated using the equation

 $1/\lambda_{abs}$ - $1/\lambda_{em}$, ^d Stokes shifts

Figure S23. Absorption spectra of (A) **W1**, (B) **W4** and (C) **W6** in DMSO/water mixtures with varied f_{w} . Absorption spectra of (D) **W1**, (E) **W4** and (F) **W6** ethanol/glycerol mixtures with varied f_{g} .

compounds	QY
W1	39%
W4	5%
W6	49%

Table S2. Solid state fluorescence QY of W1, W4 and W6

The normalized PL intensity of crystals W6R and W6Y

Figure S24. The normalized PL intensity of crystals W6R and W6Y

Molecular conformation of W1, W6R and W6Y

Figure S25. (A-E) Crystal structures. (A) Single crystal structure and taken photograph of crystal in normal light. (B) Top view and (C,D) side view of packing structure of **W1** crystal, (E) dimer

structure.

Figure S26. (A) Various intermolecular interactions in crystals of W6R. (B) Side view of packing structure of W6R crystal.

Figure S27. (A) Various intermolecular interactions in crystals of **W6Y**. (B) Side view of packing structure of **W6Y** crystal.

The ORTEP plot of W6R and W6Y

Figure S28. The ORTEP plot of (A) W6R and (B) W6Y.

Identification code	X1
Empirical formula	C ₂₉ H ₂₇ NO ₅ S
Formula weight	559.65
Temperature/K	150.01
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	13.478(3)
b/Å	21.218(4)
c/Å	10.7645(18)
α/°	90
β/°	112.505(6)
γ/°	90
Volume/Å ³	2844.0(10)
Z	4
$\rho_{calc}g/cm^3$	1.307
µ/mm ⁻¹	0.160
F(000)	1184.0
Crystal size/mm ³	0.5 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.524 to 54.206
Index ranges	-17 ≤ h ≤ 17, -27 ≤ k ≤ 27, -13 ≤ l ≤ 13
Reflections collected	51550
Independent reflections	6276 [R _{int} = 0.3675, R _{sigma} = 0.1960]
Data/restraints/parameters	6276/5/353
Goodness-of-fit on F ²	1.021
Final R indexes [I>=2σ (I)]	R ₁ = 0.0898, wR ₂ = 0.1496
Final R indexes [all data]	$R_1 = 0.2198$, w $R_2 = 0.2025$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.31

Table S3. Crystal data and structure refinement for W1.

Identification code	mo_X11R_0m_a
Empirical formula	C ₃₀ H ₂₉ NO ₄ S
Formula weight	499.60
Temperature/K	299(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.9460(6)
b/Å	12.0390(7)
c/Å	13.2743(8)
α/°	104.081(3)
β/°	103.545(3)
γ/°	113.710(3)
Volume/Å ³	1309.20(14)
Z	2
ρ _{calc} g/cm ³	1.267
µ/mm ⁻¹	0.160
F(000)	528.0
Crystal size/mm ³	0.2 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.522 to 55.076
Index ranges	-12 ≤ h ≤ 12, -15 ≤ k ≤ 15, -17 ≤ l ≤ 17
Reflections collected	41761
Independent reflections	5999 [R _{int} = 0.0908, R _{sigma} = 0.0520]
Data/restraints/parameters	5999/0/327
Goodness-of-fit on F ²	1.127
Final R indexes [I>=2σ (I)]	R ₁ = 0.0606, wR ₂ = 0.1675
Final R indexes [all data]	R ₁ = 0.1060, wR ₂ = 0.2004
Largest diff. peak/hole / e Å-3	0.30/-0.44

Table S4. Crystal data and structure refinement for W6R.

Identification code	mo_X11Y_0ma
Empirical formula	C30H29NO4S
Formula weight	999.20
Temperature/K	299.03
Crystal system	triclinic
Space group	P-1
a/Å	13.4521(16)
b/Å	14.1057(17)
c/Å	14.1605(17)
α/°	90
β/°	90
γ/°	92.405(4)
Volume/Å3	2684.6(6)
Z	2
pcalcg/cm3	1.236
µ/mm 1	0.156
F(000)	1056.0
Crystal size/mm3	0.3 × 0.2 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	5.782 to 55.032
Index ranges	-17 ≤ h ≤ 17, -18 ≤ k ≤ 18, -18 ≤ l ≤ 18
Reflections collected	36815
Independent reflections	12259 [Rint = 0.2392, Rsigma = 0.2818]
Data/restraints/parameters	12259/0/653
Goodness-of-fit on F2	0.958
Final R indexes [I>=2σ (I)]	R1 = 0.0941, wR2 = 0.1525
Final R indexes [all data]	R1 = 0.3417, wR2 = 0.2424
Largest diff. peak/hole / e Å-3	0.21/-0.22

Table S5. Crystal data and structure refinement for W6Y.

Mechanochromic luminescence of W4 and W6

Figure S29. (A) The photographs of **W4** were taken under a 365 nm with hand-held UV lamp at different states. Normalized PL spectra of **W4** at (B) grinding-immersing and (C) grinding-heating process. The process of (D) grinding-immersing treatment and (E) grinding-heating treatment by 4 cycles.

Figure S30. (A) The photographs of **W6** were taken under a 365 nm with hand-held UV lamp at different states. Normalized PL spectra of **W6** at (B) grinding-immersing and (C) grinding-heating process. The process of (D) grinding-immersing treatment and (E) grinding-heating treatment by 4 cycles.

Differential scanning calorimetry of W1 and W6

Figure S31. (A) DSC of **W1** in different states: pristine (black line), grinding (red line), immersing with acetone (blue line) and heating (green line). (B) DSC of **W6** in different states: pristine (black line), grinding (red line) immersing with acetone (blue line) and heating (green line).

Sensing properties toward protonic acids of W6

Figure S32. (A) The color change process of **W6** (500 μ M) in DCM solvent coated on filter paper with gradually decrease of TFA concentration. (B) spectra of **W6** (500 μ M) in DCM solvent coated on filter paper with gradually decrease of TFA concentration and the color change process on filter paper taken under a 365 nm hand-held UV lamp showed in the inset.

Vapochromism of W1

Figure S33. Photographs of filter papers coated with W1 (10 mM) in DCM solution under different conditions.