Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Controllable Synthesis of Co Nanoparticles in Assistance of Cucurbit[6]uril and its Efficient Photoelectrochemical

Catalysis in Water Splitting on a g-C₃N₄ Photoanode

Xin Dai¹, Xian-Yi Jin¹, Rui-Han Gao¹, Qing-Mei Ge¹, Kai Chen², Nan Jiang¹, Hang Cong^{1,*}, Zhu Tao³, Mao Liu^{1,*}

¹Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China.

Email: <u>hcong@gzu.edu.cn</u> for H. Cong, <u>liumao@outlook.com</u> for M. Liu.

²Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China

³Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.

Figure S1. TG curves of Q[6] and Q[6]-Co NPs

Figure S2. XRD pattern of the Q[6]

Figure S3. Size distribution of (a) Co NPs and (b) Q[6]- Co NPs; Elemental mapping image of Q[6]-Co NPs showing the element distributions of (c) C; (d) N; (e) O; (f) Co.

Figure S4. The infrared spectroscopy (IR) spectra of Q[6] and Q[6]-CoNPs.

Figure S5. XPS survey spectra of (a) $g-C_3N_4$; (b) Q[6]-Co NPs; (c) $g-C_3N_4/Q[6]$ -Co NPs.

Figure S6. XPS survey spectra of g-C $_3N_4/Q[6]$ -Co NPs photoanode before and after OER reaction.

Figure S7. (a) η_{sep} and (b) η_{hc} of the g-C₃N₄ and g-C₃N₄/Q[6]-Co NPs photoelectrodes using Na₂SO₃ as the hole scavenger

The charge separation efficiency (η_{sep}) and hole collection efficiency (η_{hc}) were measured by hole scavengers to assess the separation of electron/holes. Light absorption efficiency (η_{abs}) can be expressed as (1), Where $A_{(\lambda)}$ is absorbance, λ is the wavelength. where the J_{max} is maximum photocurrent density achievable assuming 100% incident photon-to-current conversion efficiency for photons with energy higher than the band gap.

$$\eta_{abs} = 1 - 10^{-A(\lambda)} \tag{1}$$

$$\eta_{\text{sep}} = J_{\text{Na}_2\text{SO}_3} / J_{\text{max}} \cdot \eta_{\text{abs}} \quad (2)$$

$$\eta_{\rm hc} = J_{\rm H_2O} / J_{\rm Na_2SO_3}$$
 (3)

The charge separation and hole collection efficiencies of the pure $g-C_3N_4$ and $g-C_3N_4/Q[6]$ -Co NPs photoanodes were shown in Figure S7a and S7b, respectively. The onset potential of $g-C_3N_4/Q[6]$ -Co NPs had a negative shift relative to bare $g-C_3N_4$, which was owing to the addition of a hole sacrificial agent in the electrolyte accelerated the reaction kinetics of the holes and reduced the recombination rate of the surface charge of the semiconductor electrode so that the photoelectrode could react at a lower potential and generate an obvious photocurrent. Moreover,

the η_{sep} and η_{hc} of g-C₃N₄/Q[6]-Co NPs were 71.29% and 32.42% at 1.23 V vs. RHE, which were 1.9 and 3.3 times higher than that of pure g-C₃N₄ (38.30% and 9.70% at 1.23 V vs. RHE), respectively. The aforementioned results indicated that the tight combination of g-C₃N₄ film and Q[6]-Co NPs was more conducive to reducing carrier recombination and accelerating the transfer of charge at the electrode/electrolyte interface to promote the oxygen evolution reaction kinetics, which was also consistent with the EIS result (Figure 5a).

Figure S8 (a) LSV curves of the as-prepared photoanodes under light illumination (solid lines) and dark (dashed lines) in 0.5 M Na₂SO₄ solution; (b) Plots of ABPE (%) vs. applied potential obtained for all photoanodes in 0.5 M Na₂SO₄ solution; (c) Chronoamperometric *I-t* curves of all photoanodes under chopped illumination at 1.23 V vs. RHE in 0.5 M Na₂SO₄ solution.

Keeping the mass of g-C₃N₄ constant, we obtained g-C₃N₄/Q[6]-Co NPs (g-C₃N₄/Q[6]-Co NPs1, g-C₃N₄/Q[6]-Co NPs2, g-C₃N₄/Q[6]-Co NPs3 and g-C₃N₄/Q[6]-Co NPs4) catalysts with different Q[6]-Co NPs contents, as the mole ratios of 1:1, 1:2, 1:3 and 1:4, respectively. In Figure S8a, g-C₃N₄/Q[6]-Co NPs1, g-C₃N₄/Q[6]-Co NPs2, g-C₃N₄/Q[6]-Co NPs3 and g-C₃N₄/Q[6]-Co NPs4 photoelectrodes showed photocurrent densities of 314, 393, 270 and 216 μ A·cm⁻² at 1.23 V vs. RHE, respectively. Compared with these samples, the g-C₃N₄/Q[6]-Co NPs2 photoelectrode had a more efficient PEC performance, which was over 23 times higher than the pristine g-C₃N₄

(17 μ A·cm⁻²). Presumably, the aforementioned results could be due to the following reasons: after incorporating Q[6]-Co NPs on g-C₃N₄, when the molar mass ratio of g-C₃N₄ to Q[6]-Co NPs was less than 1:2, the formed semiconductor–metal junction during the Fermi level equilibration contributed to the enhanced photoelectrochemical performance of g-C₃N₄/Q[6]-Co NPs. However, when the molar ratio exceeded 1:2, the decrease in photocurrent density may be due to the excessive Q[6]-Co NPs occupying the active sites and shielding of the light absorption.

Compared with g-C₃N₄, all composite photoelectrodes had significantly higher peak ABPE values in the order of: g-C₃N₄/Q[6]-Co NPs2 (0.0242%) > g-C₃N₄/Q[6]-Co NPs1 (0.0194%) > g-C₃N₄/Q[6]-Co NPs3 (0.0159%) > g-C₃N₄/Q[6]-Co NPs4 (0.0126%) (Figure S8b). As expected, g-C₃N₄/Q[6]-Co NPs2 possessed a maximum photoconversion efficiency, which was 12.6 times higher than that of bare g-C₃N₄ (0.00193%). In Figure S8c, the observed steady-state photocurrent density of g-C₃N₄/Q[6]-Co NPs2 was higher than those of g-C₃N₄/Q[6]-Co NPs1, g-C₃N₄/Q[6]-Co NPs3, g-C₃N₄/Q[6]-Co NPs4 and pure g-C₃N₄, which was consistent with the LSV results as shown in Figure S8a.

Compound		1			
chemical formula	$C_{36}H_{36}N_{24}O_{20}Co_2Cl_4$	Volume /Å ³	2740(3)		
formula weight	1384.55	Ζ	2		
crystal system	Monoclinic	$D_c /g \text{ cm}^{-3}$	1.678		
space group	C 2/m	μ /mm ⁻¹	0.897		
a /Å	20.723(13)	<i>F</i> (000)	1404		
b /Å	13.892(9)	reflections collected/unique	2773/2271		
c /Å	11.255(7)	data / restraints / parameters	2773/0/205		
α /°	90	GOF	1.093		
0 /0	122 265(0)	R_1 ,	$R_1 = 0.1905,$		
ρ /	122.203(9)	$wR_2 \left[I > 2\sigma \left(I\right)\right]^{a,b}$	$wR_2 = 0.4269$		
10	00	R_1 ,	$R_1 = 0.2015,$		
$\gamma / $	90	wR_2 (all data)	$wR_2 = 0.4299$		
temperature /K	293(2)				
$an \sum_{n=1}^{\infty} (n^2 + n^2) = (n^2 + n^2) (n^2 + n^$					
$ {}^{"}K_1 = \Sigma F_0 - F_c /\Sigma F_0 . {}^{"}wK_2 = \Sigma w(F_0 ^2 - F_c ^2) /\Sigma w(F_0)^2 ^{"} , \text{ where } w = 1/[S^2(F_0^2) + (aP)^2 + bP]. P = (F_0^2 + 2F_c^2)/3 $					

 Table S1. Crystal Data and Structure Refinements for 1

1			
Photoanodes	R_s / Ω	R_{ct}/Ω	
g-C ₃ N ₄	18.50	26.80	
$g-C_3N_4/Q[6]-CoNPs$	10.13	1.45	

Table S2. The R_s and R_{ct} of all samples extracted from fitting electrochemical impedance spectra under illumination

Table S3. The R_s and R_{ct} of the different catalysts extracted from fitting electrochemical impedance spectra under dark

Photoanodes	R_s / Ω	R_{ct}/Ω
$g-C_3N_4$	22	31.5
g-C ₃ N ₄ / Q[6]-Co NPs	9.62	1.78