Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Improved performance of immobilized laccase for catalytic degradation of

synthetic dyes using redox mediators

Zhiguo Li,^{‡a} Qingpeng Zhu,^{‡a} Zhaofei Liu,^a Li Sha^a and Zhiming Chen^{*ab}

^a School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu

241000, China.

- ^b Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu 241000, China.
- * Corresponding author. E-mail: <u>zmchen@ahpu.edu.cn</u>

‡ Authors contributed equally to the publication.

Fig. S1. XRD patterns of Fe₃O₄-PEG 2000 nanoparticles.

Fig. S2. The magnetic hysteresis loop of Fe₃O₄-PEG 2000 nanoparticles at 300 K.

Fig. S3. FT-IR spectra of (a) Fe_3O_4 -PEG 2000 and (b) Fe_3O_4 -PEG 2000-Cu²⁺ nanoparticles.

Fig. S4. Effects of (a) temperature and (b) pH value on the activities of free and immobilized laccases.

Fig. S5. Degradation kinetics of (a) triphenylmethane, (b) azo and (c) anthraquinone dyes by the immobilized laccase in the present of ABTS, VLA and TEMPO mediators at pH 4.5 and 50 $^{\circ}$ C.