Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Autonomous self optimizing defects by refining energy levels through hydrogenation in CeO_{2-x} polymorphism: A walking mobility of oxygen vacancy with enhanced adsorption capabilities and photocatalytic stability

Ranjana Verma,[†] Jay Singh,^{*‡} Sanjoy Kumar Samdarshi [§] and Anchal Srivastava^{*†}

[†]Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India

[‡] Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

[§]Centre for Energy Engineering and Centre of Excellence in Green and Efficient Energy

Technology (CoE-GEET), Central University of Jharkhand, Ranchi, Jharkhand, India

Fig. S2. The quantitative concentration as well as ratio of the $[Ce^{+4}]/[Ce^{+3}]$ in CeO₂-x and H-CeO_{2-x} catalyst were calculated using Eq. 1. The concentration of Ce³⁺ was calculated by taking the ratio of the integrated peak areas corresponding to the Ce³⁺ peaks to the total area under the whole Ce3*d*, i.e. Ce³⁺/ (Ce³⁺ + Ce⁴⁺) spectrum. The Ce³⁺ concentration in CeO_{2-x} and H-CeO_{2-x} samples is calculated using equation Eq. 1.

$$Ce^{3+} = \frac{A_{vo} + A_{v'} + A_{uo} + A_{u'}}{A_{vo} + A_{v'} + A_{uo} + A_{u'} + A_{v} + A_{v''} + A_{v'''} + A_{u''} + A_{u''} + A_{v'''}}$$
(1)

where *A* denotes the area of the corresponding peaks marked as the subscript in the spectrum (Fig 4 (c)). The calculated concentration of Ce³⁺ in CeO_{2-x} and H-CeO_{2-x} is ~44.6 % and ~36.3 %. Thus, after hydrogenation, the concentration of Ce³⁺ decreases suggesting the conversion of some Ce³⁺ to Ce⁴⁺ by converting the highly disordered CeO_{2-x} close to more perfect optimized CeO₂ catalyst. It corroborates the XRD results as well. The Ce³⁺ may either be distributed in regions of Ce₂O₃ or around O vacancies in CeO₂. The Ce⁴⁺/Ce³⁺ ratio in the CeO_{2-x} and H-CeO_{2-x} samples was calculated from the deconvoluted peak area [Fig. (d)]. The decrease in Ce³⁺ concentration caused by hydrogenation may be either due to the reduction of defects, oxygen vacancy or may be Ce₂O₃ phase convert to more stable CeO₂ phase. To further support our results, the total oxygen content in CeO_{2-x} and H-CeO_{2-x} sample is calculated to examine whether the Ce³⁺ has the form Ce₂O₃ or is due to O vacancies. The total oxygen content is the sum of the O required to fully oxidize into Ce⁴⁺ or to Ce³⁺ and to form CeO₂ and Ce₂O₃, respectively.

The stoichiometry X= [O]/[Ce] is equal to 2 for perfect CeO₂ lattice structure and 1.5 for Ce₂O₃, the ratio of the required oxygen to fully oxidize Ce⁴⁺ and Ce³⁺ to the sum [Ce⁴⁺] + [Ce³⁺] is determined from the concentrations Ce⁴⁺ and Ce³⁺ using Eq 2 and are summarized in Table 1

$$X = \frac{[O]}{[Ce]} = 3/2 \ x \ [Ce^{3+}] + 2 \ x \ [Ce^{4+}].$$

The actual stoichiometry X' = [O]/[Ce] can be calculated directly from the integrated areas of XPS peaks for the O1s and Ce3d according to the equation (3)

$$X' = \frac{O1s}{Ce3d} = \frac{A_O}{A_{Ce}} \cdot \frac{S_O}{S_{Ce}} \quad ----- (Eq. 3)$$
(3)

where A_O and A_{Ce} are the integrated areas of the O1s and Ce3d XPS peaks, and S_{Ce} (=7.393) and S_O (=0.711) are sensitivity factors of Ce and O atoms respectively. [15, 29].

Table S1: Concentrations of Ce^{4+} and Ce^{3+} ions, stoichiometry x = [O]/[Ce] and x'= [O1s]/[Ce3d] of the CeO_{2-x} and H- CeO_{2-x} catalyst

Sample	Ce ⁴⁺	Ce ³⁺	[Ce ⁴⁺]/[Ce ³⁺]	X=	X'=
				[O]/[Ce] ^a	[O1s]/[Ce3d] ^b
CeO _{2-x}	0.6373	0.2901	2.196	1.927	2.215
H-CeO _{2-x}	0.7170	0.2421	2.961	1.812	1.982

(where "a" means using the intensities of the O1s and Ce3d XPS peaks and "b" means using the deconvolution of the Ce3d XPS peak).

XPS study confirmed the coexistence of both Ce^{4+} and Ce^{3+} in the samples. This result indicates that H-CeO_{2-x} samples having less concentration of Ce³ caused by oxidation by converting Ce³⁺ to Ce⁴⁺ in which the most prominent Ce⁴⁺ content is forming CeO₂. On the other hand, It is further seen that there is oxygen deficiency w.r.t the required O needed to fully oxidize Ce in CeO_{2-x} with high Ce³⁺ content, suggesting that Ce₂O₃ and O vacancies coexist. However, the maximum oxygen deficiency is ~11% (CeO_{2-x}) and ~4% (H-CeO_{2-x}) thus the majority ~89% of Ce³⁺ is consumed in Ce₂O₃ phase in case of CeO_{2-x}.

Fig. S3). Bar plot showing the remaining concentration of MO solution until the equilibrium of MO over the catalyst under dark

