Supporting Information

Fabrication of ultra-stable composite electrode material of

La₂O₃/Co₃O₄/graphene on nickel foam for high-performance supercapacitors

Zijing Wang, a Shixiang Lu, *a Wenguo Xu, *a Ziwen Wang, a and Hao Zuo, a

School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing

100081, China.

*Corresponding author, E-mail: shixianglu@bit.edu.cn (Shixiang Lu); xuwg60@bit.edu.cn (Wenguo Xu)

Experimental

S1: Preparation of CGN electrode material

0.6 mM (0.18 g) of Co (NO₃)₂•6H₂O, and 3.6 mM (0.216 g) of CH₄N₂O were dissolved in 8 mL distilled water to obtain a homogeneous solution. The graphene solution (8 mL, 1 mg mL⁻¹) and the above solution were mixed and stirred vigorously for 0.5 h. The resulting solution with the cleaned NF was transferred to a 25 mL autoclave, heated at 120°C for 14 h, and then naturally cooled down to room temperature. Subsequently, the Co precursor/GO@NF sample was first fabricated, washed with ethanol and distilled water several times, then dried at 60°C for 8 h. Later, CGN was obtained after the Co precursor/GO@NF was annealed for 2 h at 300 °C in a Muffle furnace. The mass of active substances grown on the CGN electrode is ~ 1 mg cm⁻².

S2: Preparation of LGN electrode material

0.6 mM (0.195 g) of LaN₃O₉•xH₂O and 3.6 mM (0.216 g) of CH₄N₂O were dissolved in 8 mL distilled water to obtain a homogeneous solution. The graphene solution (8 mL, 1 mg mL⁻¹) and the above solution were mixed and stirred vigorously for 0.5 h. The resulting solution with the cleaned NF was transferred to a 25 mL autoclave, heated at 120 °C for 14 h, and then naturally cooled down to room temperature. Subsequently, the La precursor/GO@NF sample was first fabricated, washed with ethanol and distilled water several times, then dried at 60 °C for 8 h. Later, LGN was obtained after the La precursor/GO@NF was annealed for 2 h at 300 °C in a Muffle furnace. The mass of active substances grown on the LGN electrode is ~ 1 mg cm⁻².

S3: Preparation of LCN electrode material

0.6 mM (0.18 g) of Co (NO₃)₂•6H₂O, and 0.6 mM (0.195 g) of LaN₃O₉•xH₂O were dissolved in 8 mL distilled water to obtain a homogeneous solution. The graphene solution (8 mL, 1 mg mL⁻¹) and the above solution were mixed and stirred vigorously for 0.5 h. The resulting solution with the cleaned NF was transferred to a 25 mL autoclave, heated at 120°C for 14 h, and then naturally cooled down to room temperature. Subsequently, the sample of La-Co precursor @NF was first fabricated, and washed with ethanol and distilled water several times, then dried at 60°C for 8 h. Later, LCN was obtained after the La-Co precursor @NF was annealed for 2 h at 300 °C in a Muffle furnace. The mass of active substances grown on the LCN electrode is ~ 1 mg cm⁻².

S4: Preparation of GN electrode material

The graphene solution (16 mL, 2 mg mL⁻¹) was stirred vigorously for 0.5 h. Then the solution with the cleaned NF was transferred to a 25 mL autoclave, heated at 120 $^{\circ}$ C for 14 h, and then naturally cooled down to room temperature. Subsequently, the sample of GO@NF was first fabricated, and washed with ethanol and distilled water several times, then dried at 60 $^{\circ}$ C for 8 h. Later, GN was obtained after the GO@NF was annealed for 2 h at 300 $^{\circ}$ C in a Muffle furnace. The mass of active substances grown on the GN electrode is ~ 1 mg cm⁻².

Results and discussion

Fig. S1. (a) N_2 adsorption-desorption isotherm of LGN and (b) the corresponding pore size distribution of LGN; (c) N_2 adsorption-desorption isotherm of CGN and (d) the corresponding pore size distribution of CGN.

Fig. S2. (a) SEM image of CGN and (b) TEM image of CGN;

Fig. S3. (a) and (b) SEM images with different magnification of LGN.

Fig. S4. EDS elemental mapping images of the composite (La, Co, O and C).

Fig. S5. EDS elemental mapping images of LCGN.

Materials	Specific capacitance	capacitance	Stability (%)	Current	Refs.
		retention (%)		density	
Co ₃ O ₄	1455.64 F g^{-1} at 1.0 A g^{-1}	88%	82.52%	$5 \mathrm{A} \mathrm{g}^{-1}$	1
composites	in 6 mol L ⁻¹ KOH	$(0.5 \text{ to } 20 \text{ A g}^{-1})$	(2000 cycles)		
Co ₃ O ₄ / flocculent	1584F $\rm g^{-1}$ at 1.0 A $\rm g^{-1}$	63.89%	90%	$10 \ { m A} \ { m g}^{-1}$	2
graphene composites	in 5 mol L^{-1} KOH	$(1 \text{ to } 6.5 \text{ A g}^{-1})$	(800 cycles)		
ZnO / Co ₃ O ₄	1135 F g^{-1} at 1.0 A g^{-1}	42%	83%	$10 \mathrm{A}\mathrm{g}^{-1}$	3
composites	in 1 mol L ⁻¹ KOH	$(1 \text{ to } 10 \text{ A g}^{-1})$	(5000 cycles)		
Co ₃ O ₄ /MnO ₂ CC	616.7 F $\rm g^{-1}$ at 2.0 A $\rm g^{-1}$	77.6%	86.3%	$2Ag^{-1}$	4
composites	in 1 mol L ⁻¹ Na ₂ SO ₄	$(2 \text{ to } 20 \text{ A g}^{-1})$	(10000cycles)		
MnO ₂ / La ₂ O ₃	1696 F g^{-1} at 1.0 A g^{-1}	58.6%	88%	$5 \mathrm{A g}^{-1}$	5
	in 0.5 mol L^{-1} Na ₂ SO ₄	$(1 \text{ to } 15 \text{ A g}^{-1})$	(2000 cycles)		
La ₂ O ₃ /rGO	156.25 F g^{-1} at 0.1 A g^{-1}	66.67%	78%	$0.1 \mathrm{A~g^{-1}}$	6
composites	in 3 mol L^{-1} KOH	$(0.1 \text{ to } 0.5 \text{ A g}^{-1})$	(500 cycles)		
La ₂ O ₃ / Co ₃ O ₄ / G	2945.11 F g^{-1} at 1 A g^{-1}	79.2%	96%	$1 \mathrm{A} \mathrm{g}^{-1}$	This
composites	in 6 mol L ⁻¹ KOH	$(1 \text{ to } 30 \text{ A g}^{-1})$	(30000 cycles)		work

Table S1 Comparison of electrochemical performances of LCGN electrode in our work with previous.

References

- 1. A. Umar, S. D. Raut, A. A. Ibrahim, H. Algadi, H. Albargi, M. A. Alsaiari, M. S. Akhtar, M. Qamar and S. Baskoutas, *Electrochimica Acta*, 2021, **389**.
- 2. C. H. Wu, Q. Shen, R. Mi, S. X. Deng, and H. Yan, *Journal of Materials Chemistry A*, 2014, **2**, 15987-15994.
- 3. M. Gao, W. K. Wang, Q. Rong, J. Jiang, Y. J. Zhang and H. Q. Yu, ACS Appl Mater Interfaces, 2018, **10**, 23163-23173.
- 4. G. Liu, L. Ma and Q. Liu, *Electrochimica Acta*, 2020, **364**, 137265.
- 5. C. Sun, W. Pan, D. Zheng, R. Yao, and D. Jia, *Energy & Fuels*, 2020, **34**, 14882-14892.
- 6. J. Zhang, Z. Zhang, Y. Jiao, H. Yang, Y. Li, J. Zhang and P. Gao, *Journal of Power Sources*, 2019, **419**, 99-105.