Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

# Synthesis, self-assembly and Biolabeling of Perylene diimide-Tyrosine Alkyl Amide based Amphiphiles: Nanomolar detection of AOT Surfactant

Poonam Sharma<sup>[a]</sup>, Neha Sharma<sup>[b]</sup>, Satwinderjeet Kaur<sup>[b]</sup> and Prabhpreet Singh\*<sup>[a]</sup>

<sup>a</sup>Department of Chemistry, UGC Centre for Advanced Studies II, Guru Nanak Dev University, Amritsar 143 005, India. Tel: +91-84271-01534 <sup>b</sup>Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143 005, India.

Email: prabhpreet.chem@gndu.ac.in

## Synthetic Detail:

## Synthesis of methyl 6-Aminohexanoate hydrochloride

Dissolve 6-Aminocaproic acid (2 g, 0.015 mol) in 60 ml CH<sub>3</sub>OH. Keep round bottom flask at 0°C. Then add SOCl<sub>2</sub> (2.77 ml, 0.038 mol) dropwise and continue the reaction on stirring for 10 h at room temperature. After this time interval, the solvent was evaporated and 6-Aminocaproic methyl ester hydrochloride was isolated after triturating the residue with diethyl ether. This triturating procedure was repeated three times to remove the traces of SOCl<sub>2</sub> from whitish precipitate of 6-Aminocaproic methyl ester hydrochloride.

<sup>1</sup>**H NMR (400 MHz, DMSO-***d*<sub>6</sub>, **25**°**C**) δ 3.57 (s, -OCH<sub>3</sub>, 2H), 2.70 (t, J= 8 Hz, 2H), 2.28 (t, *J* = 7.6 Hz, 2H), 1.59 – 1.43 (m, 4H), 1.32 – 1.25 (m, 2H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>, 25°C) δ 173.7, 51.7 (-OCH<sub>3</sub>), 38.9, 33.5, 27.0, 25.8, 24.4.



6-aminohexanoic acid

6-methoxy-6-oxohexan-1-aminium chloride

1. Characterization data of Precursors and target derivatives



Figure S1a: <sup>1</sup>H NMR spectrum of 6-aminocaproic methyl ester hydrochloride in DMSO-*d*<sub>6</sub>.



Figure S1b: <sup>13</sup>C NMR spectrum of 6-aminocaproic methyl ester hydrochloride in DMSO-d<sub>6</sub>.



Figure S1c: DEPT-135 spectrum of 6-aminocaproic methyl ester hydrochloride in DMSO-d<sub>6</sub>.



Figure S2a: <sup>1</sup>H NMR spectrum of 1c in CDCl<sub>3</sub>.



Figure S2b: <sup>13</sup>C NMR spectrum of 1c in CDCl<sub>3</sub>.



Figure S2c: FTIR spectrum of 1c.



Figure S3a: <sup>1</sup>H NMR spectrum of PDI 2a in CDCl<sub>3</sub>.



Figure S3b: <sup>13</sup>C NMR spectrum of PDI 2a in CDCl<sub>3</sub>.



Figure S3c: FTIR spectrum of PDI 2a.







190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

150 100 50

Figure S4b: <sup>13</sup>C NMR spectrum of PDI 2b in CDCl<sub>3</sub>.



Figure S4c: FTIR spectrum of PDI 2b.



Figure S4d: Mass spectrum of PDI 2b.



Figure S5a: <sup>1</sup>H NMR spectrum of PDI 2c in CDCl<sub>3</sub>.



Figure S5b: <sup>13</sup>C NMR spectrum of PDI 2c in CDCl<sub>3</sub>.



Figure S5c: DEPT-135 spectrum of PDI 2c in CDCl<sub>3</sub>.



Figure S5d: <sup>1</sup>H-<sup>1</sup>H COSEY NMR spectrum of PDI 2c in CDCl<sub>3</sub>.



Figure S5e: FTIR spectrum of PDI 2c.



Figure S5f: Mass spectrum of PDI 2c.



Figure S6a: <sup>1</sup>H NMR spectrum of PDI 3a in CDCl<sub>3</sub>.



Figure S6b: <sup>13</sup>C NMR spectrum of PDI 3a in CDCl<sub>3</sub>.



Figure S6c: DEPT-135 spectrum of PDI 3a in CDCl<sub>3</sub>.



Figure S6d: <sup>1</sup>H–<sup>1</sup>H COSEY NMR spectrum of PDI 3a in CDCl<sub>3</sub>.



Figure S6e: FTIR spectrum of PDI 3a.



Figure S6f: Mass spectrum of PDI 3a.



Figure S7a: <sup>1</sup>H NMR spectrum of PDI 3b in CDCl<sub>3</sub>.



Figure S7b: <sup>13</sup>C NMR spectrum of PDI 3b in CDCl<sub>3</sub>.



Figure S7c: DEPT-135 spectrum of PDI 3b in CDCl<sub>3</sub>.



Figure S7d: FTIR spectrum of PDI 3b.



Figure S7e: Mass spectrum of PDI 3b.





Figure S8b: <sup>13</sup>C NMR spectrum of PDI 3c in CDCl<sub>3</sub>.



Figure S8c: DEPT-135 spectrum of PDI 3c in CDCl<sub>3</sub>.



Figure S8d: <sup>1</sup>H-<sup>1</sup>H COSEY NMR spectrum of PDI 3c in CDCl<sub>3</sub>.



Figure S8e: FTIR spectrum of PDI 3c.



Figure S8f: Mass spectrum of PDI 3c.



## 2. Optical data of PDI 2a-2d and PDI 3a-3d

Figure S9: UV–Vis spectra of (a) PDI 2a-2c (10  $\mu$ M); (b) PDI 3a-3c (10  $\mu$ M) in different polarity solvents.



**Figure S10**: Fluorescence spectra of (a) **PDI 2a–2c** (10  $\mu$ M); (b) **PDI 3a–3c** (10  $\mu$ M) recorded in different polarity solvents;  $\lambda_{ex} = 490$  nm, slit width (ex/em) =5/5.



Figure S11a: Plot between degree of aggregation ( $\alpha$ ) and  $\Delta G$  and volume % of water for PDI 3a.



Figure S11b: Plot between degree of aggregation ( $\alpha$ ) and  $\Delta G$  and volume % of water for PDI 3b.



Figure S11c: Plot between degree of aggregation ( $\alpha$ ) and  $\Delta G$  and volume % of water for PDI 3c.



Figure S11d: Images of PDI 3a-3c in DMSO (as monomer state) under (a) ambient light and (b) 365 nm UV lamp.

| Vol% Water | PDI 3a   | PDI 3b   | PDI 3c   |
|------------|----------|----------|----------|
| 0          | 1.438272 | 1.42807  | 1.412903 |
| 10         | 1.4375   | 1.417857 | 1.384365 |
| 20         | 1.39441  | 1.245283 | 1.361624 |
| 30         | 1.247839 | 0.88172  | 1.178947 |
| 40         | 1.102639 | 0.793478 | 0.859551 |
| 50         | 1.022556 | 0.751295 | 0.757576 |
| 60         | 1.039867 | 0.731844 | 0.722826 |
| 70         | 0.97992  | 0.732558 | 0.72619  |
| 80         | 0.895833 | 0.729412 | 0.713483 |
| 90         | 0.837963 | 0.735294 | 0.729885 |
| 99         | 0.74359  | 0.736842 | 0.753247 |

Table S1: Franck-Codon ratio of PDI 3a-3c derivatives.

Table S2: Fluorescence quantum yield of PDI 3a-3c derivatives in different water ratios.

| Vol% Water | PDI 3a | PDI 3b | PDI 3c |
|------------|--------|--------|--------|
| DMSO       | 49.7   | 57.1   | 65     |
| 30         | 45.4   | 22.4   | 53.9   |
| 50         | 23.2   | 3.7    | 8.0    |
| 70         | 23.5   | 3.3    | 4.5    |
| 90         | 10.3   | 3.16   | 3.8    |
| 99         | 3.0    | 2.7    | 3.1    |



**Figure S12**. The UV–vis and fluorescence spectra of (i,ii) PDI **3c** derivatives showing aggregation behaviour in different H<sub>2</sub>O: DMSO ratios.  $\lambda_{ex} = 490$  nm, slit width (ex/em) =5/5.



**Figure S13**: The UV–vis and fluorescence spectra of (a,b) PDI **2a** (10  $\mu$ M) respectively showing aggregation behaviour in different DMSO-water ratios.  $\lambda_{ex} = 490$  nm, slit width (ex/em) =5/5.



**Figure S14**: The UV–vis and fluorescence spectra of (e,f) PDI **2b** and (g,h) PDI **2c** (10  $\mu$ M) respectively showing aggregation behaviour in different DMSO-water ratios.  $\lambda_{ex} = 490$  nm, slit width (ex/em) =5/5.

| Vol% Water | PDI 2a   | PDI 2b   | PDI 2c   |
|------------|----------|----------|----------|
| 0          | 1.425743 | 1.449704 | 1.423729 |
| 10         | 1.423554 | 1.443114 | 1.423729 |
| 20         | 1.390805 | 1.125    | 1.406716 |
| 30         | 0.912458 | 0.803738 | 1.010989 |
| 40         | 0.872881 | 0.801887 | 0.798883 |
| 50         | 0.785714 | 0.661017 | 0.786885 |
| 60         | 0.783505 | 0.666667 | 0.787709 |
| 70         | 0.785047 | 0.75     | 0.779487 |
| 80         | 0.785924 | 0.759259 | 0.774359 |
| 90         | 0.786982 | 0.788991 | 0.790816 |

Table S3: Franck-Codon ratio of PDI 2a-2c derivatives.



Figure S15: Extracted Height profile of PDI 3a (1  $\mu$ M).



Figure S16: Extracted Height profile of PDI 3b (1  $\mu$ M).



Figure S17: Extracted Height profile of PDI 3c (1 µM).

| Spectral Characteristics                                   | PDI 2a     | PDI 2b | PDI 2c | PDI <b>3a</b> | PDI 3b | PDI 3c |
|------------------------------------------------------------|------------|--------|--------|---------------|--------|--------|
| Absorbance $\lambda_{max}$ [nm]                            | 535        | 535    | 535    | 535           | 537    | 536    |
| Fluorescence $\lambda_{max}$ [nm]                          | 571        | 571    | 573    | 574           | 572    | 572    |
| ε (molar absorptivity) [M <sup>-1</sup> cm <sup>-1</sup> ] | 44700      | 37700  | 69500  | 53500         | 53700  | 53600  |
| Stoke Shift (in nm)                                        | 36         | 36     | 38     | 39            | 35     | 36     |
| Quantum Yield ( $\Phi$ in %) in DMSO                       | 53.82      | 77.71  | 70.52  | 49.74         | 57.12  | 65.11  |
| Franck-Condon Ratio (A <sub>0-0</sub> /A <sub>0-1</sub> )  | 1.42       | 1.44   | 1.42   | 1.43          | 1.43   | 1.41   |
| Specific optical rotation ( $[\alpha]_D^{25}$ )            | +32.5      | +15.0  | +40    | -90           | -125   | -60    |
| HOMO Calculated from DFT (eV)                              | -5.832     | -5.825 | -5.809 | -7.869        | -7.878 | -7.885 |
| LUMO calculated from DFT (eV)                              | -3.421     | -3.416 | -3.418 | -5.541        | -5.551 | -5.556 |
| Energy gap (Eg) from DFT (eV)                              | 2.41       | 2.41   | 2.39   | 2.33          | 2.33   | 2.33   |
| HOMO calculated from CV (eV)                               | -5.479     | -5.445 | -5.559 | -7.376        | -7.414 | -7.503 |
| LUMO calculated from CV (eV)                               | -3.531     | -3.602 | -3.647 | -5.356        | -5.366 | -5.31  |
| Energy gap (Eg) from CV (eV)                               | 1.95       | 1.84   | 1.91   | 2.02          | 2.05   | 2.19   |
| $\lambda_{ex}$ [nm] calculated from (TD DFT)               | 528.65     | 528.91 | 528.61 | 543.35        | 543.79 | 543.86 |
| Angle of Twist (°)                                         | 1.48, 1.07 | 0.64,  | 1.50,  | -0.79, -      | -0.52, | 1.54,  |
|                                                            |            | 1.06   | 2.43   | 0.07          | 2.00   | 1.55   |

Table S4. Spectral and photophysical characteristics of PDI 2a–2d and PDI 3a–3d.



**Figure S18**. HOMO-LUMO molecular orbital analysis, B3LYP/6-31G\* energy optimized structure and cyclic voltammograms (CV) of PDI **3c**. CV was recorded in  $CH_2Cl_2$  solutions containing 0.1 M TBAP as supporting electrolyte with Scan rate of 50 mV s<sup>-1</sup>.

## 3. TGA data of synthesized derivatives



Figure S19: TGA Data of 1a-1c derivatives.



Figure S20: TGA Data of PDI 2a-2c derivatives.



Figure S21: TGA Data of PDI 3a-3c derivatives.

# 4. Specific Optical Rotation data of 1d, PDI 2a-2c and PDI 3a-3c

### Sample Code - PDI 1a

#### Anton Paar Polarimeter - Measurement(s)

MCP 150 Software Version: 1.50.4074.82 Serial Number: 82104498

#### Unique Id 529

- Sample Name: > Date:
- Username:
- Sample State:

PR 83 A 10/31/2020 - 10:34 AM Administrator Ok

Specific Rotation

+10.000 \*

- Measurement Mode:
- Measurement Result:
- Concentration: Optical Rotation:
- Set Temperature:
- Temperature:

+0.400 g/100ml +0.004 \* +25.0 °C +25.0 °C

### Sample Code - PDI 1b

Anton Paar Polarimeter - Measurement(s) MCP 150

#### Software Version: 1.50.4074.82 Serial Number: 82104498

#### Unique Id 530

- Sample Name:
  Date:
  Username:
- Sample State:

PR81 A 10/31/2020 - 10:42 AM Administrator Ok

Specific Rotation

- Measurement Mode:
- Measurement Result:
- Concentration:
- Optical Rotation:
- Set Temperature:
   Temperature:
- +0.400 g/100ml +0.006 ° +25.0 °C +25.0 °C

+15.000 °

## Sample Code - PDI 1c

## Anton Paar Polarimeter - Measurement(s)

MCP 150 Software Version: 1.50.4074.82 Serial Number: 82104498

#### Unique Id 549

| Sample Name:        | PR 36                 |
|---------------------|-----------------------|
| Date:               | 10/31/2020 - 01:42 PM |
| Username:           | Administrator         |
| Sample State:       | Ok                    |
| Measurement Mode:   | Specific Rotation     |
| Measurement Result: | -5.000 °              |
| Concentration:      | +0.400 g/100ml        |
| Optical Rotation:   | 0.000 *               |
| Set Temperature:    | +25.0 °C              |
| Temperature:        | +25.0 °C              |

Figure S22: Specific optical rotation of 1a-1c derivatives.

## Sample Code - PDI 2a

#### Anton Paar Polarimeter - Measurement(s)

Administrator Ok

+25.0 °C +25.0 °C

Specific Rotation +32.500 \* +0.400 g/100ml +0.013 \*

Pr 83 B 10/31/2020 - 11:20 AM

MCP 150 Software Version: 1.50.4074.82 Serial Number: 82104498

#### Unique Id 538

- Sample Name:
   Date:
- Usemame:
- Sample State:
- Measurement Mode:
   Measurement Result:
   Concentration:
   Optical Rotation:
   Set Temperature:
   Temperature:

## Sample Code - PDI 2b

# Anton Paar Polarimeter - Measurement(s) MCP 150 Software Version: 1.50.4074.82 Serial Number: 82104498

#### Unique Id 417

- Sample Name:
   Date: b 03/12/2020 - 05:45 PM
- Username:
   Sample State: Administrator
  - asurement Mode: Specific Rota +15.000 \* ation
- Measurement Result:
   Concentration:
   Optical Rotation: +0.400 g/100ml +0.006 \*
- +25.0 °C Set Temperature: Temperature: +25.0 °C

## Sample Code - PDI 2c

# Anton Paar Polarimeter - Measurement(s) MCP 150 Software Version: 1.50.4074.82 Serial Number: 82104498

#### Unique Id 582

| Sample Name:          | PR 65    |
|-----------------------|----------|
| Date:                 | 01/09/20 |
| Usemame:              | Administ |
| Sample State:         | Ok       |
| Measurement Mode:     | Specific |
| Measurement Result:   | +40.000  |
| Concentration:        | +0.200 g |
| Optical Rotation:     | +0.008 * |
| Set Temperature:      | +25.0 °C |
| Temperature:          | +25.0 °C |
| Wavelength in air:    | +589.28  |
| Wavelength in vacuum: | +589.44  |
| Cell Length:          | +10.00 m |

Figure S23: Specific optical rotation of PDI 2a-2c derivatives.

- 21 12:00 PM
- Rotation /100ml

- nm
- - nm

  - +10.00 m







Figure S25: MTT assay of PDI 3a-c.



**Figure S26** (a) MTT assay of PDI Br; (b) brightfield image; (c, d) fluorescence images of MG-63 cells incubated with PDI Br  $(1 \mu M)$  for 30 minutes.



**Figure S27**: (top) Proposed ionic self-assembly of PDI **3b** with Na AOT and (bottom) <sup>1</sup>H NMR titration of PDI **3b** upon addition of NaAOT recorded in DMSO ( $d_6$ ).