Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information:

Boosting of Oxygen Evolution Reaction Performance through Defect

and Lattice Distortion Engineering

Zhijing Wu, a Jianwei Wang, a Haiyan Li, a Lixin Cao, *a and Bohua Dong *a

^aSchool of Materials Science and Engineering, Ocean University of China, 238

Songling Road, Qingdao, 266100 P. R. China.

*Corresponding authors' Emails: caolixin@ouc.edu.cn (L. Cao) and dongbohua@ouc.edu.cn (B. Dong)

Faradic efficiency. The evolved O₂ was collected by a water-gas displacing method. The i-t curve measured at the same time was integrated to get the cumulative charge (Q(C)). The volume of O₂ (V(mL)) was calculated through the relation of $V(mL)=Q(C)\times22.4(L \text{ mol}^{-1})\times1000$ ÷(F(C mol^{-1})×4), where F means Faradic constant with a value of 96485 C mol⁻¹.

Figure S1. Digital images of a) bare NF, b) Co(OH)₂//NF, c) after high-heat sulfuration, d) electrolytic OER catalytic process

Figure S1 presents digital images of the bare Ni foam, $Co(OH)_2//NF$, after Co_9S_8/Ni_3S_2 growth, and electrolytic OER catalytic process. The initial color of the Ni foam electrode was brown (Figure S1a), and NF is surrounded closely and uniformly by the $Co(OH)_2$ (Figure S1b). After the Co_9S_8/Ni_3S_2 had grown on the Ni foam substrate, the foam surface became completely black (Figure S1c). Seeing from the change of color, we can observe the uniform and complete formation of Co_9S_8/Ni_3S_2 on the Ni foam, with no uncovered parts on the Ni foam substrate, which is further observed in the SEM images (Figure 2b). The uniform and complete morphology feature also have a tremendous effect on the performance of samples. Importantly, NF

can still maintain stability and mechanical property after high temperature annealing at 550°C in Figure S1c and d, which had been proved by the chronoamperometry and multi-step chronopotentiometric curve.

Figure S2. XRD patterns of a) $Co(OH)_2$, b) the bare NF, Co_9S_8 , $Ni_3S_2//NF$, and Co_9S_8/Ni_3S_2 HNA//NF, c) Raman spectra of Co_9S_8/Ni_3S_2 HNA//NF.

Figure S3. EDS spectrum of a single Co_9S_8/Ni_3S_2 nanowire. The Cu peaks in the EDS spectrum come from the Cu grid as sample holder.

Figure S4. a,b) SEM images of $Co(OH)_2$ nanowires, c,d) TEM images of $Co(OH)_2$ nanowires. The inset is the selected-area electron diffraction (SAED) pattern of $Co(OH)_2$ nanowires.

Figure S5. a,b) SEM images of Ni₃S₂//NF. c,d) SEM and TEM images of Co₉S₈

powder respectively.

Figure S6. Nyquist plots of the $Co_9S_8//NF$, $Ni_3S_2//NF$, Co_9S_8/Ni_3S_2 HNA//NF. The inset is the equivalent circuit model that contains the electrolyte resistance (R_s), charge-transfer resistance (R_{ct}) and constant phase element (CPE).

Table S1. Electrochemical impedance spectroscopy (EIS) fitting results for Co_9S_8/Ni_3S_2 HNA//NF, $Co_9S_8//NF$ and $Ni_3S_2//NF$.

materials	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
Co ₉ S ₈ /Ni ₃ S ₂ HNA//NF	1.27	30
C0 ₉ S ₈ //NF	1.57	83
Ni ₃ S ₂ //NF	1.19	219

Figure S7. a,b,c) CV curves at different scan rates from 20, 40, 60 to 180 mV s⁻¹ of the Co_9S_8/Ni_3S_2 HNA//NF, $Co_9S_8//NF$, $Ni_3S_2//NF$, respectively.

Figure S8. the BJH pore size distribution of the Co_9S_8/Ni_3S_2 HNA.

Table S2. The theoretical values, measured values and the Faradaic efficiencies of the amount of O_2 production at different periods.

Time (min)	10	20	30	40	50	60
Calculated O ₂ (mmol)	0.08036	0.16072	0.24108	0.31697	0.38393	0.45089
Measured O ₂ (mmol)	0.08000	0.15715	0.23126	0.30135	0.36608	0.42992
Faradaic efficiency (%)	100	97.78	95.93	95.07	95.35	95.35
Average (%)	96.51					

Figure S9. The experimental O_2 production versus theoretical quantities for OER water splitting of Co_9S_8/Ni_3S_2 HNA//NF at the constant current density.

Figure S10. XRD patterns of Co_9S_8/Ni_3S_2 HNA//NF before and after stability.

Figure S11. a, b) SEM images of Co₉S₈/Ni₃S₂ HNA//NF after OER stability measurments. (c) OER polarization curves of Co₉S₈/Ni₃S₂ HNA//NF before and after stability test.

Figure S12. a, b) HRTEM images of Co_9S_8/Ni_3S_2 HNA//NF after harsh OER.

Figure S13. a, b) HRTEM images of Co_9S_8/Ni_3S_2 HNA//NF after harsh OER.

Figure S14. XPS spectra of a) Co 2p, b) Ni 2p, c) S 2p, and d) O 1s for Co_9S_8/Ni_3S_2 HNA//NF before and after harsh OER (Sat. means shake-up satellites)

Materials	Electrolyte	η [mV] for j _{OER} = 10 mA cm ⁻²	Tafel slope [mV dec ⁻¹]	References
C0 ₉ S ₈ /Ni ₃ S ₂ HNA//NF	1.0 M KOH	223	79	This work
NiS ₂ /CoS ₂ -O NWs	1.0 M KOH	235	31	7
Co ₃ O ₄ /N-rmGO//NF	0.1 M KOH	310	67	8
NiCoP//NF	1.0 M KOH	280	87	10
NiCo ₂ S ₄ NWs//NF	1.0 M KOH	260	40	38
Ni ₂ P NPs	1.0 M KOH	290	59	S1
Ni _{0.9} Fe _{0.1} /NC	1.0 M KOH	330	45	S2
Fe ₆ Ni ₁₀ O _x	1.0 M KOH	286	48	S3
Fe _{0.1} -NiS ₂ NA//Ti	1 .0M KOH	$\eta_{100} = 231$	43	S4
NiCoP/C nanoboxes	1.0 M KOH	330	96	S5
Cu@CoS _x //CF	1.0 M KOH	270	-	S6
NiCoP nanosheet	1.0 M KOH	η ₅₀ =310	68.6	S7
NiS//NF	1.0 M KOH	$\eta_{20}=335$	89	S8
NiCo ₂ S ₄ NA//CC	1.0 M KOH	$\eta_{100}=340$	89	S9
C03O4@C0S//NF	1.0 M KOH	290	77.6	S10
Ni(OH) ₂ -TCNQ//CF	1.0 M KOH	η ₂₀ =225	110	S11
SnCoFe-Ar//NF	1.0 M KOH	270	42.3	S12
Zn _{0.15} Ni _{0.85} Co ₂ O ₄	0.1 M KOH	560	62	S13
Co _{0.7} Fe _{0.3} P//CNT	1.0 M KOH	243	36	S14
Co-MOF nanosheet	1.0 M KOH	263	74	S15
NiMoO _{4-x} /MoO ₂	1.0 M KOH	320	69	S16

Table S3. Comparison of OER performance based on non-precious metal

electrocatalysts in alkaline electrolytes.

References

S1.Stern, L.-A.; Feng, L.; Song, F.; Hu, X., Ni₂P as a Janus Catalyst for Water
Splitting: the Oxygen Evolution Activity of Ni₂P Nanoparticles. *Energy Environ. Sci.*2015, 8, 2347-2351.

S2.Zhang, X.; Xu, H.; Li, X.; Li, Y.; Yang, T.; Liang, Y., Facile Synthesis of Nickel-Iron/Nanocarbon Hybrids as Advanced Electrocatalysts for Efficient Water Splitting. *ACS Catal.* 2016, 6, 580-588.

S3.Kuai, L.; Geng, J.; Chen, C.; Kan, E.; Liu, Y.; Wang, Q.; Geng, B., A Reliable Aerosol-Spray-Assisted Approach to Produce and Optimize Amorphous Metal Oxide Catalysts for Electrochemical Water Splitting. *Angew. Chem. Int. Ed.* 2014, 53, 7547-7551.

S4.Yang, N.; Tang, C.; Wang, K.; Du, G.; Asiri, A. M.; Sun, X., Iron-doped Nickel Disulfide Nanoarray: A Highly Efficient and Stable Electrocatalyst for Water Splitting. *Nano Res.* 2016, 9, 3346-3354.

S5.He, P.; Yu, X.-Y.; Lou, X. W., Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. *Angew. Chem. Int. Ed. Engl.* 2017, 56, 3897-3900.

S6.Liu, Y.; Li, Q.; Si, R.; Li, G.-D.; Li, W.; Liu, D.-P.; Wang, D.; Sun, L.; Zhang, Y.;
Zou, X., Coupling Sub-Nanometric Copper Clusters with Quasi-Amorphous Cobalt
Sulfide Yields Efficient and Robust Electrocatalysts for Water Splitting Reaction. *Adv. Mater.* 2017, 29, 1606200.

S7.Li, Y.; Zhang, H.; Jiang, M.; Kuang, Y.; Sun, X.; Duan, X., Ternary NiCoP Nanosheet Arrays: An Excellent Bifunctional Catalyst for Alkaline Overall Water Splitting. *Nano Res.* 2016, 9, 2251-2259.

S8.Zhu, W.; Yue, X.; Zhang, W.; Yu, S.; Zhang, Y.; Wang, J.; Wang, J., Nickel Sulfide Microsphere Film on Ni Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. *Chem. Commun.* 2016, 52, 1486-1489.

S9.Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A. M., NiCo₂S₄ Nanowires Array as an Efficient Bifunctional Electrocatalyst for Full Water Splitting with Superior Activity. *Nanoscale* 2015, 7, 15122-15126.

S10.Zhou, J.; Dou, Y.; Zhou, A.; Guo, R.-M.; Zhao, M.-J.; Li, J.-R., MOF Template-Directed Fabrication of Hierarchically Structured Electrocatalysts for Efficient Oxygen Evolution Reaction. *Adv. Energy Mater.* 2017, 7, 1602643.

S11.Guo, X.; Kong, R.-M.; Zhang, X.; Du, H.; Qu, F., Ni(OH)₂ Nanoparticles Embedded in Conductive Microrod Array: An Efficient and Durable Electrocatalyst for Alkaline Oxygen Evolution Reaction. *ACS Catal.* 2018, 8, 651-655.

S12.Chen, D.; Qiao, M.; Lu, Y.-R.; Hao, L.; Liu, D.; Dong, C.-L.; Li, Y.; Wang, S., Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. *Angew. Chem. Int. Ed.* 2018, 57, 8691-8696.

S13.Yang, M.; Li, Y.; Yu, Y.; Liu, X.; Shi, Z.; Xing, Y., Self-Assembly of Three-Dimensional Zinc-Doped NiCo₂O₄ as Efficient Electrocatalysts for Oxygen Evolution Reaction. *Chem. Eur. J* 2018, 24, 13002-13008. S14.Zhang, X.; Zhang, X.; Xu, H.; Wu, Z.; Wang, H.; Liang, Y., Iron-Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. *Adv. Funct. Mater.* 2017, 27, 1606635.

S15.Xu, Y.; Li, B.; Zheng, S.; Wu, P.; Zhan, J.; Xue, H.; Xu, Q.; Pang, H., Ultrathin Two-dimensional Cobalt–organic Framework Nanosheets for High-performance Electrocatalytic Oxygen Evolution. *J. Mater. Chem. A* 2018, 6, 22070-22076.

S16.Zhang, Z.; Ma, X.; Tang, J., Porous NiMoO_{4-x}/MoO₂ Hybrids as Highly Effective Electrocatalysts for the Water Splitting Reaction. *J. Mater. Chem. A* 2018, 6, 12361-12369.