## Supporting Information Synthesis of P doped NiS as Electrode Material for Supercapacitors with Enhanced Rate Capability and Cycling Stability

Li'an Peng,<sup>a</sup> Yongxiao Tuo,<sup>b</sup> Yan Lin,<sup>c</sup> Cuiping Jia,<sup>d</sup> Shutao Wang,<sup>e</sup> Yan Zhou<sup>a</sup> and Jun Zhang <sup>a,\*</sup>

<sup>a</sup> School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China

<sup>b</sup> College of New Energy, China University of Petroleum (East China),

Qingdao, 266580, PR China

<sup>c</sup> College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China

<sup>d</sup> College of Science, China University of Petroleum (East China), Qingdao, 266580, China

<sup>e</sup> College of Chemistry and Chemical Engineering, China University of
 Petroleum (East China), Qingdao, 266580, China

Corresponding authors:

## Jun Zhang: Zhangj@upc.edu.cn

|                | a (Å)  | b (Å)  | c (Å)  | Volume <sub>cell</sub> (Å <sup>3</sup> ) |
|----------------|--------|--------|--------|------------------------------------------|
| 075-0613 (NiS) | 3.42   | 3.42   | 5.3    | 53.7                                     |
| NiS            | 3.4194 | 3.4194 | 5.3028 | 53.70                                    |
| P-NiS          | 3.4253 | 3.4253 | 5.3268 | 54.12                                    |

Table. S1. The lattice constant and unit cell volume of the prepared material.



**Fig. S1.** (a) XRD pattern of Ni-P seeds; (b, c) TEM and HRTEM images of P-Ni seeds.



**Fig. S2.** (a) TEM image of NiS; (b) TEM image of P-NiS; (c, d) HRTEM images of P-NiS; (e) EDS spectrum of NiS; (f) EDS spectrum of P-NiS.



**Fig. S3.** (a) Nitrogen adsorption-desorption isotherms; (b) pore size distribution curves of P-NiS.



Fig. S4. XRD patterns of products obtained under different reaction conditions.



Fig. S5. High-resolution XPS of Ni 2p.



**Fig. S6.** (a) CV curves at different scan rates and (b, c) GCD curves at different densities of NiS; (d) CV curves at different scan rates and (e, f) GCD curves at different densities of Ni-P.



Fig. S7. CV comparison before and after stability test of P-NiS.



Fig. S8. (a, b) SEM images of the NiS electrode before and after cycle stability test; (c, d) SEM images of the P-NiS electrode before and after cycle stability test.



Fig. S9. EDS image of the P-NiS electrode after cycle stability test.

| Materials | Electrolyte | Max. SC                                                                | Rate Performance                                      | Cycling results                         | Refs. |
|-----------|-------------|------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-------|
| NiS       | 2 MKOH      | 927 F·g <sup>-1</sup> /4.08 A·g <sup>-1</sup>                          | 62.8%; 583 F g <sup>-1</sup> /10.2 A g <sup>-1</sup>  | 74.1%; 3000cycles/4.2 A g <sup>-1</sup> | [1]   |
| NiS       | 2 M KOH     | 857.76 $F \cdot g^{-1}/2 A \cdot g^{-1}$                               | 59.8%; 512.96 F·g <sup>-1</sup> /5 A g <sup>-1</sup>  | 40.7%; 1000cycles/2 A g <sup>-1</sup>   | [2]   |
| NiS/CRs   | 2 M KOH     | 514 $F \cdot g^{-1}/1 A \cdot g^{-1}$                                  | 56.4%; 290 F g <sup>-1</sup> /5 A g <sup>-1</sup>     | 49.7%; 2000cycles/5 A g <sup>-1</sup>   | [3]   |
| NiS/rGO   | 2 M KOH     | 905.3 $F \cdot g^{-1} / 0.5 A \cdot g^{-1}$                            | 63.95%; 579 F g <sup>-1</sup> /5 A g <sup>-1</sup>    | 90.9%; 2000cycles/4 A g <sup>-1</sup>   | [4]   |
| NiS/GNS   | 6 M KOH     | 775 F·g <sup>-1</sup> /0.5 A·g <sup>-1</sup>                           | 64.9%; 503 F g <sup>-1</sup> /5 A g <sup>-1</sup>     | 88.1%; 1000cycles/2 A g <sup>-1</sup>   | [5]   |
| NiS       | 3 M KOH     | 717.3 F·g <sup>-1</sup> /0.6 A·g <sup>-1</sup>                         | 17.5%; 125.4 F g <sup>-1</sup> /6 A g <sup>-1</sup>   | 98.5%; 1000cycles/1.2 A g <sup>-1</sup> | [6]   |
| NiS       | 6 M KOH     | 845 $F \cdot g^{-1}/1 A \cdot g^{-1}$                                  | 44%; 375 F g <sup>-1</sup> /10 A g <sup>-1</sup>      | 81.6%; 1000cycles/1 A g <sup>-1</sup>   | [7]   |
| NiS       | 3 M KOH     | $1122.7 \text{ F} \cdot \text{g}^{-1}/1 \text{ A} \cdot \text{g}^{-1}$ | 28%; 323.5 F g <sup>-1</sup> /30 A g <sup>-1</sup>    | 97.8%; 1000cycles/10 A g <sup>-1</sup>  | [8]   |
| NiS/NHCS  | 2 M KOH     | $1150 \text{ F} \cdot \text{g}^{-1}/1 \text{ A} \cdot \text{g}^{-1}$   | 52.2%; 600.3F $g^{-1}/20$ A $g^{-1}$                  | 76%; 4000cycles/5 A g <sup>-1</sup>     | [9]   |
| NiS       | 3 M KOH     | 1315.4 $F \cdot g^{-1}/1 A \cdot g^{-1}$                               | 24.2%; 317.8 F g <sup>-1</sup> /30 A g <sup>-1</sup>  | 89.2%; 5000cycles/10 A g <sup>-1</sup>  | [10]  |
| NiS       |             | 515.98 C·g <sup>-1</sup> /1 A·g <sup>-1</sup>                          | 37.6%; 194.01 C·g <sup>-1</sup> /50 A·g <sup>-1</sup> | 76.7%; 3000cycles/30 A·g <sup>-1</sup>  | This  |
| P-NiS     | 2 M KOH     | 727.79 $C \cdot g^{-1}/1 A \cdot g^{-1}$                               | 50.6%; 368.26 $C \cdot g^{-1} / 50A \cdot g^{-1}$     | 93.9%; 3000cycles/30 A·g <sup>-1</sup>  | Work  |

 Table. S2. Comparison of electrochemical performance for NiS based electrode.

## References

[1] B.T. Zhu, Z. Wang, S. Ding, J.S. Chen and X.W. Lou, RSC Adv., 2011, 1, 397.

[2] J. Yang, X. Duan, Q. Qin and W. Zheng, J. Mater. Chem. A, 2013, 1, 7880.

[3] C. Sun, M. Ma, J. Yang, Y. Zhang, P. Chen, W. Huang and X. Dong, *Sci. Rep.*, 2014, 4, 7054.

[4] J. Yang, X. Duan, W. Guo, D. Li, H. Zhang and W. Zheng, *Nano Energy*, 2014, 5, 74.

[5] Y. Li, K. Ye, K. Cheng, J. Yin, D. Cao and G. Wang, *J. Power Sources*, 2015, 274, 943.

[6] C. Wei, C. Cheng, Y. Cheng, Y. Wang, Y. Xu, W. Du and H. Pang, *Dalton Trans.*, 2015, 44, 17278.

[7] L. Peng, X. Ji, H. Wan, Y. Ruan, K. Xu, C. Chen, L. Miao and J. Jiang, *Electrochim. Acta*, 2015, **182**, 361.

[8] B. Guan, Y. Li, B. Yin, K. Liu, D. Wang, H. Zhang and C. Cheng, *Chem. Eng. J.*, 2017, **308**, 1165.

[9] T. Liu, C. Jiang, B. Cheng, W. You and J. Yu, J. Mater. Chem. A, 2017, 5, 21257.

[10] J. Zhao, B. Guan, B. Hu, Z. Xu, D. Wang and H. Zhang, *Electrochim. Acta*, 2017, 230, 428.