A Novel CoNi₇O₈/MnO₂ Nanocomposite Supported on Ni Foam as Peroxymonosulfate Activator for Highly Efficient Singlet Oxygen Mediated Removal of Methylene Blue Jiankang Wang ^{a, *, 1}, Rong Peng ^{a, 1}, Kui Chen ^a, Yajing Wang ^a, Taiping Xie ^{a, *}, Quanxi Zhu ^a, Yuan Peng ^a, Songli Liu ^a, Zhongping Yao ^b - ^a School of materials science and engineering, Yangtze Normal University, Chongqing 408100, China - ^b School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China - * Corresponding authors. E-mail address: wjkwjk074478@163.com (Jiankang Wang); deartaiping@163.com (Taiping Xie). ¹ Jiankang Wang and Rong Peng contributed equally to this work and should be considered as cofirst authors. Table S1 The elemental composition in CoNi₇O₈/MnO₂/NF obtained by SEM-EDS analysis | Element | Mass content (%) | | | | |---------|------------------|--|--|--| | Ni | 68.2 | | | | | Mn | 7.7 | | | | | Co | 7.0 | | | | | O | 17.0 | | | | Fig. S1 SEM image of CoNi₇O₈/NF Fig. S2 Effect of $CoCl_2 \cdot 6H_2O$ content on MB removal by $CoNi_7O_8/MnO_2/NF$ (Reaction conditions: [MB] $_0 = 20$ mg/L, [PMS] $_0 = 0.5$ g/L, initial pH 5.9 and T = 30 °C) Fig. S3 The reaction kinetic curves of MB removal by different catalytic systems Table S2 The comparison of catalytic performances of CoNi₇O₈/MnO₂/NF with the previously reported catalysts | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | reperious suitary | | | | | |---|--|-------|-------------------|------|----------|----------------------|------| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Catalysts | | | ьU | | k | Pof | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Catalysts | • | | рп | • | (min ⁻¹) | Kel. | | CoNi ₇ O ₈ /MnO ₂ /NF 0.5 20 5.9 (15 min) 0.528 work Cu@Co-MOFs 0.614 64 5.0 $\frac{100}{(30 \text{ min})}$ 0.109 [1] FexOy/N-GN/CNTs 1.228 100 7.62 $\frac{100}{(20 \text{ min})}$ 0.33444 [2] Mn ₃ O ₄ 1.88 62 4.0 $\frac{86.71}{(20 \text{ min})}$ 0.005 [3] Ag-La _{0.8} Ca _{0.2} Fe _{0.9} 4O _{3-δ} (Ag-LCF) 0.368 10 / 90 (75 min) / [4] CoFe ₂ O ₄ (Ag-CO) 0.491 200 7.0 93.3% / [6] | | (g/L) | (mg/L) | | (%) | | | | Cu@Co-MOFs 0.614 64 5.0 (15 min) ($30 \text{ min})$ work FexOy/N-GN/CNTs 1.228 100 7.62 100 (20 min) 0.33444 $[2]$ Mn ₃ O ₄ 1.88 62 4.0 86.71 (20 min) 0.005 $[3]$ Ag-La _{0.8} Ca _{0.2} Fe _{0.9} 4O _{3-δ} (Ag-LCF) 0.368 10 $/$ 90 (75 min) $/$ $[4]$ CoFe ₂ O ₄ @GO 0.491 200 7.0 93.3% (93.3% (| CoNi ₇ O ₈ /MnO ₂ /NF | 0.5 | 20 | 5.9 | 100 | 0.528 | This | | Cu@Co-MOFs 0.614 64 5.0 (30 min) 0.109 [1] FexOy/N-GN/CNTs 1.228 100 7.62 100 0.33444 [2] Mn ₃ O ₄ 1.88 62 4.0 86.71
(20 min) 0.005 [3] Ag-La _{0.8} Ca _{0.2} Fe _{0.9} 4O _{3-\delta}
(Ag-LCF) 0.368 10 $/$ 90
(75 min) $/$ [4] CoFe ₂ O ₄ 0.3 20 6.3 97.9%
(75 min) 0.114 [5] CuFe ₂ O ₄ @GO 0.491 200 7.0 93.3% $/$ [6] | | | | | (15 min) | | work | | FexOy/N-GN/CNTs 1.228 100 7.62 $\frac{(30 \text{ min})}{100}$ 0.33444 [2] Mn ₃ O ₄ 1.88 62 4.0 $\frac{86.71}{(20 \text{ min})}$ 0.005 [3] Ag-La _{0.8} Ca _{0.2} Fe _{0.9} 4O _{3-δ} 0.368 10 / $\frac{90}{(75 \text{ min})}$ 7.62 $\frac{90}{(75 \text{ min})}$ 6.114 [5] CuFe ₂ O ₄ @GO 0.491 200 7.0 $\frac{93.3\%}{(75 \text{ min})}$ 6.114 [5] | Cu@Co-MOFs | 0.614 | 64 | 5.0 | 100 | 0.109 | [1] | | FexOy/N-GN/CNTs 1.228 100 7.62 (20 min) 0.33444 [2] Mn ₃ O ₄ 1.88 62 4.0 86.71 (20 min) 0.005 [3] Ag-La _{0.8} Ca _{0.2} Fe _{0.9} 4O _{3-δ} 0.368 10 / 90 (75 min) | | | | | (30 min) | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | FexOy/N-GN/CNTs | 1.228 | 100 | 7.62 | 100 | 0.33444 | [2] | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | (20 min) | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Mn_3O_4 | 1.88 | 62 | 4.0 | 86.71 | 0.005 | [3] | | Ag-La _{0.8} Ca _{0.2} Fe _{0.9} 4O _{3-δ} 0.368 10 / $\frac{90}{(75 \text{ min})}$ [4] $CoFe2O4 0.3 20 6.3 \frac{97.9\%}{(75 \text{ min})} 0.114 [5]$ $CuFe2O4@GO 0.491 200 7.0 \frac{93.3\%}{(75 \text{ min})}$ | | | | | (20 min) | | | | (Ag-LCF) 0.368 10 7 7 14 15 10 10 10 10 10 10 10 10 | Ag-Lao «Ca0.2Fe0.94O _{2.8} | | | | , , | | | | CoFe ₂ O ₄ 0.3 20 6.3 $\frac{97.9\%}{(75 \text{ min})}$ 0.114 [5] | | 0.368 | 10 | / | | / | [4] | | $CoFe_2O_4$ 0.3 20 6.3 (75 min) 0.114 [5] $CuFe_2O_4@GO$ 0.491 200 7.0 93.3% | (rig Let) | | | | ` ' | | | | (75 min)
93.3%
CuFe ₂ O ₄ @GO 0.491 200 7.0 | $CoFe_2O_4$ | 0.3 | 20 | 6.3 | | 0.114 | [5] | | $CuFe_2O_4@GO = 0.491 = 200 = 7.0$ | - 1 | | | | (75 min) | | | | Curc ₂ O ₄ (u)OO 0.491 200 7.0 (20iv) / [0] | CuFe ₂ O ₄ @GO | 0.491 | 200 | 7.0 | 93.3% | / | [6] | | (30 min) | | | | | (30 min) | | | Fig. S4 Time-dependent UV-vis absorption spectra and corresponding removal efficiency curves of RhB (a, c) and MB (b, d) (Reaction conditions: [MB] $_0$ and [RhB] $_0$ = 20 mg/L, [PMS] $_0$ = 0.5 g/L, initial pH 5.9 and T = 30 Fig. S5 Influences of temperature and water type on MB removal (Reaction condition: [MB] $_0$ = 20 mg/L, [PMS] $_0$ = 0.5 g/L, initial pH 5.9 and T = 30 °C) Fig. S6 High-resolution C 1s XPS spectra of fresh (a) and used (b) CoNi₇O₈/MnO₂/NF Fig. S7 High-resolution Mn 2p (a), Co 2p (b), Ni 2p (c) and O 1s (d) XPS spectra of used $CoNi_7O_8/MnO_2/NF$ Fig. S8 XRD patterns of fresh and used $CoNi_7O_8/MnO_2/NF$ Fig. S9 SEM images of fresh (a) and used (b) $CoNi_7O_8/MnO_2/NF$ Fig. S10 The impact of homogeneous catalysis on MB removal (Reaction conditions: $[MB]^0 = 20 \text{ mg/L}$, $[PMS]^0 = 0.5 \text{ g/L}$, initial pH 5.9 and T = 30 °C) Fig. S11 LC-MS spectrum of MB degradation solution after reaction of 15min ## References [1] H. Li, S. Xu, J. Du, et al. Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue[J]. RSC Advances, 2019, 9 (17): 9410-9420. [2] X. Zhao, Q. D. An, Z. Y. Xiao, et al. One-step preparation of Fe_xO_y/N-GN/CNTs heterojunctions as a peroxymonosulfate activator for relatively highly-efficient methylene blue degradation[J]. Chinese Journal of Catalysis, 2018, 39 (11): 1842-1853. - [3] R. Shokoohi, M. Khazaei, K. Godini, et al. Degradation and mineralization of methylene blue dye by peroxymonosulfate/Mn₃O₄ nanoparticles using central composite design: Kinetic study[J]. Inorganic Chemistry Communications, 2021, 127: 108501. - [4] T. Ma, L. Liu, B. Meng, et al. Heterogeneous activation of peroxymonosulfate via a Ag-La_{0.8}Ca_{0.2}Fe_{0.94}O_{3- δ} perovskite hollow fibre membrane reactor for dye degradation[J]. Separation and Purification Technology, 2019, 211: 298-302. - [5] K. Zhang, D. Sun, C. Ma, et al. Activation of peroxymonosulfate by CoFe₂O₄ loaded on metal-organic framework for the degradation of organic dye[J]. Chemosphere, 2020, 241: 125021. - [6] X. Lei, M. You, F. Pan, et al. CuFe₂O₄@GO nanocomposite as an effective and recoverable catalyst of peroxymonosulfate activation for degradation of aqueous dye pollutants[J]. Chinese Chemical Letters, 2019, 30 (12): 2216-2220.