A Rigid-Flexible Double-Layer Steric Strategy for Ethylene (Co)oligomerization with Pyridine-imine Ni(II) and Pd(II)

Complexes

Zhengpeng Yan^{†a}, Huiqin Bi^{†b}, Beihang Ding^a, Hui Wang^{*b}, Guoyong

Xu*a, Shengyu Dai*a,b

^aInstitutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China. ^bSchool of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.

[†]The first two authors are equal first authors.

1. Experimental sections

1.1 General Considerations

All chemicals were commercially sourced, except those whose synthesis is described. All experiments were carried out under a dry nitrogen atmosphere using standard Schlenk techniques or in a glove-box. Deuterated solvents used for NMR were dried and distilled prior to use. ¹H and ¹³C NMR spectra were recorded by a JNM-ECZ600R or JNM-ECZ400R spectrometer at ambient temperature unless otherwise stated. The chemical shifts of the ¹H and ¹³C NMR spectra were referenced to the residual solvent; Coupling constants are in Hz. Mass spectra were obtained by the Analytical Center of Anhui University. Elemental analysis was performed by the Analytical Center of Anhui University. X-ray Diffraction data were collected at 293(2) K on a Bruker Smart CCD area detector with graphite-monochromated Mo K^α radiation ($\lambda = 0.71073$ Å).

1.2 Procedure for the Synthesis of Arylamines A1-A2.

To a mixture of arylboronic acid (25 mmol, 2.5 eq.), 2,6-dibromo-4-methylaniline (10 mmol, 1 eq.), Pd(PPh₃)₄ (1 mmol, 0.1 eq.) and K₂CO₃ (50 mmol, 5 eq.) under a nitrogen atmosphere in a Schlenk flash, THF (200 ml) and water (50 ml) were added. The suspension was heated to 75 °C with vigorous stirring for 24 h. After removal of the solvent in vacuo, the residue was exacted by dichloromethane, washed by water, and dried over MgSO₄. After filtration, the organic phases were concentrated to dryness. The resulting residue was then purified by column chromatography (silica gel; PE/DCM = 4:1) to afford product as a white solid.

A1 (2.97 g, 70%) ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, J = 8.0 Hz, 4H, Ar-H), 7.28 (d, J = 8.1 Hz, 4H, Ar-H), 6.95 (s, 2H, Ar-H), 3.86 (s, br, 2H, -N H_2), 2.58 – 2.49 (m, 2H, -CH-), 2.29 (s, 3H, -C H_3), 1.92 (d, J = 11.8 Hz, 4H, -C H_2 -), 1.87 (d, J = 12.2 Hz, 4H, -C H_2 -), 1.77 (d, J = 13.1 Hz, 2H, -C H_2 -), 1.51 – 1.37 (m, 8H, -C H_2 -), 1.30 – 1.25 (m, 2H, -C H_2 -). ¹³C NMR (151 MHz, CDCl₃) δ 147.07, 137.29, 130.28, 129.25, 127.27, 44.41 (-CH-), 34.57 (-CH₂-), 27.02 (-CH₂-), 26.28 (-CH₂-), 20.47 (Ar-CH₃). APCI-MS (m/z): calcd for C₃₁H₃₇N: 424.2960, Found, 424.2978, [M+H]⁺.

A2 (3.00 g, 73%) ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dt, J = 18.2, 8.2 Hz, 12H, Ar-H), 7.45 (t, J = 7.6 Hz, 4H, Ar-H), 7.36 (t, J = 7.3 Hz, 2H, Ar-H), 7.02 (s, 2H, Ar-H), 3.80 (s, br, 2H, -N H_2), 2.33 (s, 3H, -C H_3). ¹³C NMR (101 MHz, CDCl₃) δ 140.77, 140.05, 138.86, 138.45, 130.42, 129.75, 128.86, 127.78, 127.51, 127.47,

127.39, 127.08, 20.44 (-*C*H₃). APCI-MS (m/z): calcd for C₃₁H₂₅N: 412.2021, Found, 412.2042, [M+H]⁺.

1.3 Procedure for the Synthesis of Ligands L1-L2.

The ligands L1-L2 were prepared as follows: ZnCl₂ (0.34 g, 2.5 mmol) and 2-acetylpyridine (2.0 mmol), were suspended in glacial acetic acid (5 mL). Anilines (2 mmol) was added, and the reaction mixture was refluxed under stirring for 4 h. The solution was allowed to cool to room temperature, and a bright yellow solid precipitated. The solid was separated by filtration and washed with acetic acid (3×5 mL) and diethyl ether (5×5 mL), to remove remaining acetic acid. Drying under vacuum gave bright yellow, poorly soluble solid. Then the zinc was removed from the zinc pyridine-imine complex. The product of the previous step was suspended in methylene chloride (30 mL), and a solution of potassium oxalate (0.36 g, 2.2 mmol) in water (5 mL) was added. The reaction mixture was stirred vigorously for 1 h. The two phases were separated, and the organic layer was washed with water (3×20 mL) and dried with MgSO4. After filtration, the solvent was removed under vacuum to afford the product as an yellow powder and dried under high vacuum.

L1 (0.93 g, 88%) ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 4.3 Hz, 1H, Ar-H), 7.88 (d, J = 7.9 Hz, 1H, Ar-H), 7.58 (t, J = 7.6 Hz, 1H, Ar-H), 7.27 (d, J = 7.9 Hz, 4H,

Ar-*H*), 7.18 – 7.11 (m, 3H, Ar-*H*), 7.03 (d, J = 7.9 Hz, 4H, Ar-*H*), 2.36 (s, 2H, -C*H*-), 2.35 (s, 3H, -C*H*₃), 1.79 (s, 3H, Ar-C(C*H*₃)=N), 1.78 – 1.62 (m, 8H, -C*H*₂-), 1.34 – 1.15 (m, 12H, -C*H*₂-). ¹³C NMR (101 MHz, CDCl₃) δ 167.03 (*C*=N), 156.47, 148.11, 146.22, 144.13, 137.83, 136.10, 133.18, 131.81, 130.17, 129.15, 126.23, 124.28, 121.48, 44.16 (-CH-), 34.41 (-CH₂-), 34.38 (-CH₂-), 26.93 (-CH₂-), 26.22 (-CH₂-), 20.87 (-CH₃), 17.83 (Ar-C(CH₃)=N). APCI-MS (m/z): calcd for C₃₈H₄₂N₂: 527.3382, Found, 527.3406, [M+H]⁺.

L2 (0.95 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 4.2 Hz, 1H, Ar-H), 8.03 (d, J = 8.0 Hz, 1H, Ar-H), 7.65 (td, J = 7.9, 1.6 Hz, 1H, Ar-H), 7.58 – 7.48 (m, 12H, Ar-H), 7.39 (t, J = 7.5 Hz, 4H, Ar-H), 7.33 – 7.18 (m, 5H, Ar-H), 2.46 (s, 3H, -C H_3), 1.91 (s, 3H, Ar-C(C H_3)=N). ¹³C NMR (101 MHz, CDCl₃) δ 167.31 (C=N), 156.10, 148.26, 144.27, 140.81, 139.42, 139.21, 136.23, 133.50, 131.44, 130.44, 129.68, 128.70, 127.16, 126.98, 126.54, 124.49, 121.32, 20.90 (- CH_3), 17.83 (Ar-C(CH_3)=N). APCI-MS (m/z): calcd for C₃₈H₃₀N₂: 515.2443, Found, 515.2461, [M+H]⁺.

2. Spectra Data

2.1 ¹H and ¹³C of the Synthetic Compounds.

Figure S2. ¹³C NMR spectrum of A1 in CDCl₃.

Figure S3. ¹H NMR spectrum of A2 in CDCl₃.

Figure S4. ¹³C NMR spectrum of A2 in CDCl₃.

Figure S5. ¹H NMR spectrum of L1 in CDCl₃.

Figure S6. ¹³C NMR spectrum of L1 in CDCl₃.

Figure S7. ¹H NMR spectrum of L2 in CDCl₃.

Figure S8. ¹³C NMR spectrum of L2 in CDCl₃.

Figure S9. ¹H NMR spectrum of Pd1 in CDCl₃.

Figure S10. ¹³C NMR spectrum of Pd1 in CDCl₃.

Figure S11. ¹H NMR spectrum of Pd2 in CDCl₃.

Figure S12. ¹³C NMR spectrum of Pd2 in CDCl₃.

2.2 MS of A1-A2 and L1-L2.

Figure S13. ESI MS of A1.

Figure S14. ESI MS of A2.

Figure S15. ESI MS of L1.

Figure S16. ESI MS of L2.

2.3 MS of Complexes Ni1-Ni2 and Pd1-Pd2.

Figure S17. MALDI-TOF-MS of Ni1.

Figure S18. MALDI-TOF-MS of Ni2.

Figure S19. MALDI-TOF-MS of Pd1.

Figure S20. MALDI-TOF-MS of Pd2.

2.4 ¹H and ¹³C NMR of Representative Ethylene Oligomers and E-MA Co-oligomers.

Figure S21. ¹H NMR spectrum of the ethylene oligomer from table 1, entry 1.

Figure S22. ¹³C NMR spectrum of the ethylene oligomer from table 1, entry 4.

Figure S23. ¹H NMR spectrum of the ethylene oligomer from table 2, entry 1.

Figure S24. ¹H NMR spectrum of the ethylene oligomer from table 3, entry 1.

Figure S25. ¹³C NMR spectrum of the ethylene oligomer from table 3, entry 4.

3. X-ray Crystallography

Table S1 Crystal data and structure refinement for Pd2.	
Identification code	Pd2
Empirical formula	C39 H33 Cl N2 Pd
Formula weight	671.52
Temperature/K	293(2)
Crystal system	Triclinic
Space group	P-1
a/Å	9.2957(9)
b/Å	11.7588(11)

c/Å	15.4097(14)
α/°	87.540(3)
β/°	87.042(3)
γ/°	70.733(2)
Volume/Å ³	1587.3(3)
Z	2
$\rho_{calc}g/cm^3$	1.405
µ/mm⁻¹	0.699
F(000)	688
Crystal size/mm ³	0.40 x 0.20 x 0.08
5	
Radiation	MoKα ($\lambda = 0.71073$)
Radiation 2Θ range for data collection/°	MoKα ($\lambda = 0.71073$) 2.23 to 25.02
Radiation 2Θ range for data collection/° Index ranges	$ \begin{array}{l} MoK\alpha \ (\lambda = 0.71073) \\ \hline 2.23 \ to \ 25.02 \\ \hline -10 <=h <=11, \ -8 <=k <=13, \ -18 <=l <=18 \end{array} $
Radiation 2© range for data collection/° Index ranges Reflections collected	$MoK\alpha (\lambda = 0.71073)$ 2.23 to 25.02 $-10 <= h <= 11, -8 <= k <= 13, -18 <= l <= 18$ 7660
Radiation 2@ range for data collection/° Index ranges Reflections collected Independent reflections	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Radiation 2@ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ²	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2σ (I)]	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2σ (I)] Final R indexes [all data]	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$