Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Hybrid photoluminescent material of lanthanide fluoride and graphene oxide with

stronger luminescence intensity as chemical sensor of mercury ion

Richa Singhaal, Lobzang Tashi, Swaita Devi, Haq Nawaz Sheikh*

^aDepartment of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu-180006, India

(Supplementary Information)

Table of Contents

Pages

CONTENTS

1.	TEM micrograph	S2
2.	FT-IR spectra	
3.	Energy transfer diagram	
4.	Life time decay curve	.87-88
5.	Photoluminescence emission responses of hybrid material with different metal	
	ions	
6.	Quenching efficiency	S13
7.	Life time decay curve of nanosensor in presence of different metal ions	S14
8.	PL emission spectra showing interference with different metals ions	.S15-S19

Fig. S1†: ESI TEM micrographs depicting the variations in the morphology of $Na_xLi_yGdF_4:Tb^{3+}$ nanoparticles at different Li/Na ions concentrations: where x/y = (a) x=15 mmol y= 0 mmol (b) x=10 mmol, y=5mmol (c) x=7.5 mmol y=7.5mmol (d) x=5mmol, y=10 mmol (e) x=0 mmol, y=15mmol.

Fig. S2[†]: ESI FT-IR spectra visualizing the effect of different Na/Li ions concentrations on the $Na_xLi_yGdF_4$:Tb³⁺ nanophosphors (a) x=15 mmol y= 0 mmol (b) x=10 mmol, y=5mmol (c) x=7.5 mmol y=7.5mmol (d) x=5mmol, y=10 mmol (e) x=0 mmol, y=15mmol

Fig. S3[†]: ESI FT-IR spectra of synthesized graphene oxide (GOSs)

Fig. S4[†]**: ESI** FT-IR images displaying the presence of different functional groups attached to the synthesized nanostructure. (a) $Na_{10}Li_5GdF_4$:Tb³⁺ nanophosphors.

(b) $Na_{10}Li_5GdF_4$: Tb³⁺@PMA@ Phen@ GO.

Fig. S5†: **ESI** Energy level diagram of as-synthesized $Na_xLi_yGdF_4$:Tb³⁺nanophosphors showing efficient energy transfer from Gd³⁺ to Tb³⁺ ions

Fig. S6†: ESI Lifetime decay curve of as synthesized $Na_xLi_yGdF_4:Tb^{3+}$ nanophosphors at varying Na/Li ions concentrations (a) x=10 mmol y= 5 mmol (b) x=5 mmol, y=10 mmol (c) x=7.5 mmol y=7.5 mmol (d) x=15 mmol, y=0 mmol (e) x=0 mmol, y=15 mmol.

Fig. S7[†]: ESI Photoluminescence lifetime decay curves of as synthesized nanostructure
(a) Na_xLi_yGdF₄:Tb³⁺ nanophosphors.

(b) Na_xLi_yGdF₄:Tb³⁺@PMA@Phen@GO nanocomposite.

Fig. S8†: ESI Variation in photoluminescence intensity of designed chemosensor in presence of different Co²⁺ concentrations (from 0 to 100 ppm) selective excitation at $\lambda_{ex} =$ 275 nm: (a) Emission spectra of nanophosphors with addition of Co²⁺ ion (using water as solvent) (b) Nonlinear Stern-Volmer plot of I₀/I-1 versus (Co²⁺) concentrations (c) linear Stern-Volmer fitting and (d) Error bar

Fig. S9[†]: **ESI** Variation in photoluminescence intensity of designed chemosensor in presence of different Mn^{2+} concentrations (from 0 to 100 ppm) selective excitation at λ_{ex} = 275 nm (a) Emission spectra of nanophosphors with addition of Mn^{2+} ion (using water as solvent) (b) Nonlinear Stern-Volmer plot of I₀/I-1 versus (Mn²⁺) concentrations (c) linear Stern-Volmer fitting and (d) Error bar

Fig. S10[†]: **ESI** Variation in photoluminescence intensity of designed chemosensor in presence of different Ni²⁺ concentrations (from 0 to 100 ppm) selective excitation at λ_{ex} = 275 nm (a) Emission spectra of nanophosphors with addition of Ni²⁺ ion (using water as solvent) (b) Nonlinear Stern-Volmer plot of I₀/I-1 versus (Ni²⁺) concentrations (c) linear Stern-Volmer fitting and (d) Error bar

Fig. S11[†]: **ESI** Variation in photoluminescence intensity of designed chemosensor in presence of different Pb²⁺ concentrations (from 0 to 100 ppm) selective excitation at $\lambda_{ex} =$ 275 nm: (a) Emission spectra of nanophosphors with addition of Pb²⁺ ion (using water as solvent) (b) Nonlinear Stern-Volmer plot of I₀/I-1 versus (Pb²⁺) concentrations (c) linear Stern-Volmer fitting and (d) Error bar

Fig. S12†: ESI Quenching efficiency of the prepared nanosensor in presence of different metals ions analytes (100 ppm) in aqueous medium.

Fig. S13[†]: **ESI** Photoluminescence lifetime decay curves of as-fabricated nanosensor with addition of various toxic metal ions (a) blank nanosensor without addition of mrtal analyte (b) nanosensor with addition of Mn^{2+} (100 ppm) (c) nanosensor with addition of Ni^{2+} (100 ppm) (d) nanosensor with addition of $Co^{2+}(100 \text{ ppm})$ (e) nanosensor with addition of Pb^{2+} (100 ppm) (f) nanosensor with addition of $Hg^{2+}(100 \text{ ppm})$

Fig. S14†: ESI Photoluminescence emission spectra of as-designed nanosensor with the addition of Hg^{2+} ion and different concentrations of Pb^{2+} ion.

Fig. S15[†]: **ESI** Photoluminescence emission spectra of as-designed nanosensor after the addition of Hg^{2+} ion along with different concentrations of Ni^{2+} ion.

Fig. S16[†]**: ESI** Photoluminescence emission spectra of as-designed nanosensor with the addition of Hg^{2+} ion and different concentrations of Co^{2+} ion.

Fig. S17†: ESI Photoluminescence emission spectra of as-designed nanosensor with the addition of Hg^{2+} ion and different concentrations of Mn^{2+} ion.

Fig. S18[†]**: ESI** Photoluminescence emission spectra of as-designed nanosensor with the addition of Hg^{2+} ion and presence of different metal ions.