Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information

Naphthalene-tagged highly stable and reusable luminescent metal-organic probes for selective and fast detection of 4-nitroaniline in water

Alokananda Chanda and Sanjay K. Mandal*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India

*sanjaymandal@iisermohali.ac.in

Table of Contents

Section	Item	Page No.
S-1	Spectroscopic characterization of 1-4 (Fig. S1–S4)	S2-S3
S-2	Study of surface morphology of 1-4 (Fig. S5–S8)	S4-S7
S-3	Spectroscopic details for the sensing of different amines by 1-4 (Fig. S9–S41)	S8-S22
S-4	Stern-Volmer plots of 4-NA in presence of 1-4 (Fig. S42–S45	S23-S24
S-5	Detection limit calculations for 1-4 (Fig. S46–S49)	S25-S28
S-6	Photoluminescence study of H ₂ (mbhna) (Fig. S50–S53)	S29-S31
S-7	Spectral overlap (Fig. S54) and possible interaction sites in 1-4 with 4-NA (Fig. 55)	S 32
S-8	Stability of 1-4 in 4-NA (Fig. S56-S57)	S33-S34
Table S1	Literature survey for the detection of 4-NA	S35

Section S-1: Spectroscopic characterization of 1-4

Fig. S1 FTIR spectrum of 1.

Fig. S2 FTIR spectrum of 2.

Fig. S3 FTIR spectrum of 3.

Fig. S4 FTIR spectrum of 4.

Section S-2: Study of surface morphology of 1-4

Fig. S5 EDX and elemental mapping of 1.

Fig. S6 EDX and elemental mapping of 2.

0.9	20			
0	2	4		
Element	Weight%	Atomic%	C	N
С	63.62	73.43		
Ν	7.91	7.83	0	Zn
0	19.41	16.82		
Zn	9.06	1.92		

Fig. S7 EDX and elemental mapping of 3.

Fig. S8 EDX and elemental mapping of 4.

Section S-3: Spectroscopic details for the sensing of different amines by 1-4

Fig. S9 Solid-state diffuse reflectance spectra of 1-4.

Fig. S10 Emission spectra of 1 dispersed in aqueous solution upon incremental addition of 4-NA solution (1 mM).

Fig. S11 Emission spectra of 1 dispersed in aqueous solution upon incremental addition of 2,6-DCNA solution (1 mM).

Fig. S12 Emission spectra of **1** dispersed in aqueous solution upon incremental addition of 2,4-DNA solution (1 mM).

Fig. S13 Emission spectra of **1** dispersed in aqueous solution upon incremental addition of 3-NA solution (1 mM).

Fig. S14 Emission spectra of **1** dispersed in aqueous solution upon incremental addition of 2-NA solution (1 mM).

Fig. S15 Emission spectra of 1 dispersed in aqueous solution upon incremental addition of Aniline solution (1 mM).

Fig. S16 Emission spectra of **1** dispersed in aqueous solution upon incremental addition of EDA solution (1 mM).

Fig. S17 Emission spectra of 1 dispersed in aqueous solution upon incremental addition of TEA solution (1 mM).

Fig. S18 Emission spectra of 2 dispersed in aqueous solution upon incremental addition of 4-NA solution (1 mM).

Fig. S19 Emission spectra of 2 dispersed in aqueous solution upon incremental addition of 2,6-DCNA solution (1 mM).

Fig. S20 Emission spectra of 2 dispersed in aqueous solution upon incremental addition of 2,4-DNA solution (1 mM).

Fig. S21 Emission spectra of **2** dispersed in aqueous solution upon incremental addition of 3-NA solution (1 mM).

Fig. S22 Emission spectra of **2** dispersed in aqueous solution upon incremental addition of 2-NA solution (1 mM).

Fig. S23 Emission spectra of 2 dispersed in aqueous solution upon incremental addition of Aniline solution (1 mM).

Fig. S24 Emission spectra of **2** dispersed in aqueous solution upon incremental addition of EDA solution (1 mM).

Fig. S25 Emission spectra of 2 dispersed in aqueous solution upon incremental addition of TEA solution (1 mM).

Fig. S26 Emission spectra of 3 dispersed in aqueous solution upon incremental addition of 4-NA solution (1 mM).

Fig. S27 Emission spectra of 3 dispersed in aqueous solution upon incremental addition of 2,6-DCNA solution (1 mM).

Fig. S28 Emission spectra of 3 dispersed in aqueous solution upon incremental addition of 2,4-DNA solution (1 mM).

Fig. S29 Emission spectra of 3 dispersed in aqueous solution upon incremental addition of 3-NA solution (1 mM).

Fig. S30 Emission spectra of 3 dispersed in aqueous solution upon incremental addition of 2-NA solution (1 mM).

Fig. S31 Emission spectra of 3 dispersed in aqueous solution upon incremental addition of Aniline solution (1 mM).

Fig. S32 Emission spectra of 3 dispersed in aqueous solution upon incremental addition of EDA solution (1 mM).

Fig. S33 Emission spectra of 3 dispersed in aqueous solution upon incremental addition of TEA solution (1 mM).

Fig. S34 Emission spectra of 4 dispersed in aqueous solution upon incremental addition of 4-NA solution (1 mM).

Fig. S35 Emission spectra of 4 dispersed in aqueous solution upon incremental addition of 2,6-DCNA solution (1 mM).

Fig. S36 Emission spectra of 4 dispersed in aqueous solution upon incremental addition of 2,4-DNA solution (1 mM).

Fig. S37 Emission spectra of **4** dispersed in aqueous solution upon incremental addition of 3-NA solution (1 mM).

Fig. S38 Emission spectra of **4** dispersed in aqueous solution upon incremental addition of 2-NA solution (1 mM).

Fig. S39 Emission spectra of 4 dispersed in aqueous solution upon incremental addition of Aniline solution (1 mM).

Fig. S40 Emission spectra of **4** dispersed in aqueous solution upon incremental addition of EDA solution (1 mM).

Fig. S41 Emission spectra of 4 dispersed in aqueous solution upon incremental addition of TEA solution (1 mM).

Fig. S42 Stern-Volmer (SV) plot for 4-NA of **1**. The relative fluorescence intensity is linear with 4-NA concentration in the range of 0-20 μ M, $I_0/I = 1 + 18074.94961$ ([4-NA]) (R² = 0.999288).

Fig. S43 Stern-Volmer (SV) plot for 4-NA of **2**. The relative fluorescence intensity is linear with 4-NA concentration in the range of 0-20 μ M, I₀/I = 1 + 14864.36104 ([4-NA]) (R² = 0.94571).

Fig. S44 Stern-Volmer (SV) plot for 4-NA of **3**. The relative fluorescence intensity is linear with 4-NA concentration in the range of 0-20 μ M, I₀/I = 1 + 20126.4431 ([4-NA]) (R² = 0.98365).

Fig. S45 Stern-Volmer (SV) plot for 4-NA of **4**. The relative fluorescence intensity is linear with 4-NA concentration in the range of 0-20 μ M, $I_0/I = 1 + 28443.70033$ ([4-NA]) (R² = 0.92148).

Section S-5: Detection limit calculations for 1-4

Fig. S46 Linear region of fluorescence intensity of 1 upon incremental addition of 4-NA (1 mM stock solution) at λ_{em} = 548 nm (upon λ_{ex} = 380 nm) (R² = 0.98194).

Blank Readings(5)	Fl Intensity
Reading 1	1.281 x 10 ⁸
Reading 2	1.292 x 10 ⁸
Reading 3	1.284×10^8
Reading 4	1.281 x 10 ⁸
Reading 5	1.291 x 10 ⁸
Standard Deviation (σ)	5.612 x 10 ⁵

Calculation of Standard Deviation of 1:

Determination of Detection Limit of 1:

Detection limit was calculated using the following equation:

Detection limit = $3\sigma/m$

Slope from Graph	1.67214 x 10 ¹² M ⁻¹
Detection Limit (3o/m)	1.006 μM (138 ppb)

Fig. S47 Linear region of fluorescence intensity of 2 upon incremental addition of 4-NA (1 mM stock solution) at λ_{em} = 548 nm (upon λ_{ex} = 380 nm) (R² = 0.97912).

Calculation of Standard Deviation of 2:

Blank Readings(5)	Fl Intensity
Reading 1	1.138 x 10 ⁸
Reading 2	1.127 x 10 ⁸
Reading 3	1.15 x 10 ⁸
Reading 4	1.156 x 10 ⁸
Reading 5	1.145 x 10 ⁸
Standard Deviation (σ)	1.121 x 10 ⁶

Determination of Detection Limit of 2:

Detection limit was calculated using the following equation:

Detection limit = $3\sigma/m$

Slope from Graph	1.41 x 10 ¹² M ⁻¹
Detection Limit (3o/m)	2.38 μM (329 ppb)

Fig. S48 Linear region of fluorescence intensity of 3 upon incremental addition of 4-NA (1 mM stock solution) at λ_{em} = 551 nm (upon λ_{ex} = 380 nm) (R² = 0.94212).

Blank Readings(5)	Fl Intensity
Reading 1	5.16 x 10 ⁷
Reading 2	5.19 x 10 ⁷
Reading 3	5.13 x 10 ⁷
Reading 4	5.14 x 10 ⁷
Reading 5	5.12 x 10 ⁷
Standard Deviation (σ)	2.77 x 10 ⁵

Calculation of Standard Deviation of 3:

Determination of Detection Limit of 3:

Detection limit was calculated using the following equation: Detection limit = $3\sigma/m$

Slope from Graph	1.0005 x 10 ¹² M ⁻¹
Detection Limit (3o/m)	0.830 µM (114 ppb)

Fig. S49 Linear region of fluorescence intensity of 4 upon incremental addition of 4-NA (1 mM stock solution) at λ_{em} = 547 nm (upon λ_{ex} = 380 nm) (R² = 0.94149).

Calculation of Standard Deviation of 4:

Blank Readings(5)	Fl Intensity
Reading 1	1.35 x 10 ⁸
Reading 2	1.36 x 10 ⁸
Reading 3	1.34 x 10 ⁸
Reading 4	1.36 x 10 ⁸
Reading 5	$1.36 \ge 10^8$
Standard Deviation (σ)	4.47 x 10 ⁵

Determination of Detection Limit of 4:

Detection limit was calculated using the following equation:

Detection limit = $3\sigma/m$

Slope from Graph	1.89916 x 10 ¹² M ⁻¹
Detection Limit (3o/m)	0.706 μM (97 ppb)

Section S-6: Photoluminescence study of H₂(mbhna)

Fig. S50 (a) Emission spectra of 1-4; (b) Emission spectrum of H₂(mbhna) dispersed in aqueous solution ($\lambda_{ex} = 380$ nm).

Fig. S51 Emission spectra of H₂(mbhna) dispersed in aqueous solution upon incremental addition of 4-NA solution (1 mM) ($\lambda_{em} = 470$ nm and $\lambda_{ex} = 380$ nm).

Fig. S52 Stern-Volmer (SV) plot for 4-NA of H₂(mbhna). The relative fluorescence intensity is linear with 4-NA concentration in the range of 0-20 μ M, I₀/I = 1 + 10280.20724 ([4-NA]) (R² = 0.93502).

Fig. S53 Linear region of fluorescence intensity of H₂(mbhna) upon incremental addition of 4-NA (1 mM stock solution) at λ_{em} = 470 nm (upon λ_{ex} = 380 nm) (R² = 0.93435).

Blank Readings(5)	Fl Intensity
Reading 1	4.09 x 10 ⁶
Reading 2	3.96 x 10 ⁶
Reading 3	3.68×10^6
Reading 4	3.34 x 10 ⁶
Reading 5	3.24 x 10 ⁶
Standard Deviation (σ)	3.72182 x 10 ⁵

Calculation of Standard Deviation of H₂(mbhna):

Determination of Detection Limit of H2(mbhna):

Detection limit was calculated using the following equation:

Detection limit = $3\sigma/m$

Slope from Graph	3.611 x 10 ¹⁰ M ⁻¹
Detection Limit (3o/m)	30.9 μM (4.2 ppm)

Section S-7: Spectral overlap and possible interaction sites in 1-4

Fig. S54 Spectral overlap of absorption spectrum of 4-NA and emission spectra of 1-4.

Fig. S55 Possible interaction sites in 1-4 with 4-NA.

Section S-8: Stability of 1-4 in 4-NA

Fig. S56 FESEM images of 1-4 before (a,c,e,g) and after (b,d,f,h) immersing in 4-NA.

Fig. S57 PXRD patterns of 1-4 before and after immersing in 4-NA for 3 days.

Table S1 Literature survey on 4-NA detection

Compound	Ksv (M ⁻¹)	Detection	Solvent	Reference
-		Limit		
{[Zn(mbhna)(bpea)]}n (1)	1.80 x 10 ⁴	130 ppb	Water	This work
{[Cd(mbhna)(bpea)]}n (2)	1.48 x 10 ⁴	330 ppb	Water	This work
${[Zn(mbhna)(bpba)] CH_3OH H_2O_n (3)}$	2.01 x 10 ⁴	114 ppb	Water	This work
{[Cd(mbhna)(bpba)]}n (4)	2.84 x 10 ⁴	97 ppb	Water	This work
{Zn4(TPOM)(1,4-NDC)4}n	7.87 x 10 ⁴	88 ppb	Water	ACS Appl. Mater.
				Interfaces, 2018,
				10 , 42406–42416.
$[Zn_2(tpbn)(mbhna)_2]$ ·3.5H ₂ O·1.5DMF	2.23 x 10⁴	0.74 ppm	Water	Chem. Asian J.,
{[Cd ₂ (tpbn)(mbhna) ₂]·2DMF} _n	0.07 4.04			2019, 14 , 3712–
	2.87 x 10 ⁴	0.46 ppm	Water	3720.
$[Cd(H_2BDDA)]_n$	8.79 x 10⁴	0.68 ppm	Water	ChemistrySelect,2
where, H ₄ BDDA = $4,4-([2, 2]-bipyridine]-$				017, 2 , 12046–
(7a (haba) (NO))	0.00 × 1.04	0.1		12050. Dolton Trong
$\{2n(DpDa)(NO_3)\}_n$	2.28 X 10 ⁺	0.1 ppm	DIVIF	Dailon Trans.,
HDPDa = 4-(DIS(4-(Pynall-4-				2010, 41, 7222-
	7.01×10^{3}	7 15 ppm	Wator	Fur Linora
[Cd(mbhna)(bpma)]·DME}	7.01×10^{4}	1.15 ppm	Water	Chom 2021
[Zn(mbhna)(bpha)]	2.20×10^{4}	1.00 ppm 1.94 nnm	Water	2595_2605
{[Cd(mbhna)(bpta)(CH ₂ OH)]}	1.57×10^4	4 50 ppm	Water	2000 2000.
$\{Cd(5-asba)(bimb)\}_{n}$	9.8×10^4	0.52 ppm	Water/	J. Mater. Chem. C.
where, H_25 -asba = 2-amino-5-	0.0 / 10	oloz ppin	MeOH	2016, 4 , 11404–
sulfobenzoic acid and				11418.
bimb = 1,4-bis(1H-imidazol-1-yl)butane				
TPDC-DB	1.7 x 10 ⁴	0.45 ppm	THF	J. Mater. Chem. C,
				2016, 4 , 4427–
				4433.
{[Zn4(µ3-OH)2(L)(H2O)2]·2DMF}n	NA	4 ppm	DMF	J. Mater. Chem. A,
where L = [1,1'; 4',1'']terphenyl-				2015, 3 , 22369–
3,5,2',5',3",5"-hexacarboxylic acid				22376.
${Zn_3L_3(DMF)_2}_n$	5.99 x 10 ⁴	NA	Acetonitrile	Journal of Solid
{Zn ₃ L ₃ (DMA) ₂ (H ₂ O) ₃ } _n	2.18 x 10⁴	NA		State Chemistry,
where, $L = 4,4'$ -stillbene dicarboxylic acid				2015, 232 , 96–
	4.00 4.04			101.
$\{[Eu_2(IDC)_3(CH_3OH)_2] : CH_3OH\}_n$	4.32 x 10 ⁴	NA	меОн	RSC Adv., 2016, 6,
{[ID2(IDC)3(CH3OH)2] CH3OH}n	9.52 x 10°	NA		91741-91747.
acid				
{[Zna(oba)a(1-bndb)];2DME}	2.05×10^4	5 x 10 ⁻⁵ M	Acetonitrile	Sensors and
(TMII-4)	2.33 × 10	(6.9 ppm)	Acelonitine	Actuators R 2017
where H_{2} oba = 4.4'-oxybisbenzoic acid		(0.0 ppin)		243 353–360
and				,
4-bpdb = 1.4-bis(4-pyridyl)-2.3-diaza-1.3-				
butadiene				
H ₂ Tyr-N-Dan	NA	NA	MeOH	RSC Adv., 2014, 4,
-				47249–47253.
Cd-PDA	4.07 x 10 ⁴	3.5 ppb	Water	J. Mater. Chem. A,
where, H ₂ PDA = 9-phenylcarbazole-3,6-				2016, 4 , 16349–
dicarboxylic acid				16355.