Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Novel hydroxyl functionalized ionic liquids as efficient catalysts for

the conversion of CO₂ into cyclic carbonates under

metal/halogen/cocatalyst/solvent-free conditions

Shuang Yue ^{a,*}, Hongliu Qu^a, Xinxin Song ^a, Xuannuo Feng^a ^a Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China

Characteristic data:

Ionic liquid 1:

`ОН∠

(1) $[N_{2,2,2,2OH}][BA]$

 $C_{12}H_{27}NO_3(233)$. ¹H NMR (D₂O, 300MHz, RT): δ =3.91 (2H, s), 3.32 (8H, q), 2.08 (2H, t), 1.47 (2H, m), 1.21 (9H, t), 0.82 (3H, t); ¹³C NMR (75.5MHz, D₂O): δ =184.05, 57.45, 54.81, 53.39, 39.69, 19.46, 13.32, 6.74; IR (KBr): ν =1563 cm⁻¹ (C=O).

Figure S1-2. ¹³C NMR spectrum of IL1

Figure S1-3. IR spectrum of IL 1

0 ЮH HO Ö (2) $[N_{2,2,2,2OH}][SA]$

 $C_{12}H_{25}NO_5(263)$. ¹H NMR (D₂O, 300MHz, RT): δ =3.90 (2H, s), 3.33 (8H, q), 2.44 (4H, t), 1.22 (9H, t); ¹³C NMR (75.5MHz, D₂O): δ =180.08, 57.51, 54.87, 53.47, 32.03, 6.81; IR (KBr): v=1578 cm⁻¹ (C=O).

Figure S2-3. IR spectrum of IL 2

(3) [N_{2,2,2,2OH}][OAc]

 $C_{10}H_{23}NO_3(205)$. ¹H NMR (D₂O, 300MHz, RT): δ =3.90 (2H, s), 3.30 (8H, q), 1.83 (3H, s), 1.20 (9H, t); ¹³C NMR (75.5MHz, D₂O): δ =181.32, 62.62, 57.54, 54.87, 53.47, 23.38, 6.81; IR (KBr): *v*=1581 cm⁻¹ (C=O).

Figure S3-3. IR spectrum of IL 3

 $C_{10}H_{23}NO_4(221)$. ¹H NMR (D₂O, 300MHz, RT): δ =3.85 (4H, d), 3.31 (8H, q), 1.21 (9H, t); ¹³C NMR (75.5MHz, D₂O): δ =179.87, 61.30, 57.50, 54.87, 53.45, 6.79; IR (KBr): *v*=1600cm⁻¹ (C=O).

Figure S4-2. ¹³C NMR spectrum of IL 4

Figure S4-3. IR spectrum of IL 4

(5) [N_{2,2,2,2}][BA]

 $C_{12}H_{27}NO_2(217)$. ¹H NMR (D₂O, 300 MHz, RT): $\delta = 3.17$ (8H, q), 2.08 (2H, m), 1.48 (2H, m), 1.18 (12H, m), 0.82 (3H, m); ¹³C NMR (75 MHz, D₂O) $\delta = 183.59$, 52.07, 39.69, 19.58, 13.55, 6.82; IR (KBr): v = 1564 cm⁻¹ (C=O).

Figure S5-2. ¹³C NMR spectrum of IL 5

Figure S5-3. IR spectrum of IL 5

Figure S6. Distribution of ¹H NMR and ¹³C NMR spectra of ionic liquid 1.

Table S1

¹ H NMR (D ₂ O)) of IL 1 (δ, pp	m).					
H(1)	Н	(2,3,4,5)	H(6)	I	H(7)	H(8,9,10)	H(11)
3.91		3.32	2.08	2.08 1.47		1.21	0.82
(2H,s)		(8H,q)	(2H,t)	(2H,m)		(9H,t)	(3H,t)
¹³ C NMR (D ₂ C)) of IL 1 (δ , pp	om).					
Ca	C^b	Cc	C^d	Ce	$\mathbf{C}^{\mathbf{f}}$	C^g, C^h, C^i	C^{j}, C^{k}, C^{l}
184.05	57.45	54.81	53.39	39.69	19.46	13.32	6.74

Figure S7. Distribution of 1 H NMR and 13 C NMR spectra of ionic liquid 2.

Table S2

¹ H NMR (D ₂ O) of IL 2	2 (δ, ppm).					
H(1)		H(2,3,4,5)	H(6,7)		H(8,9,10)	
3.90		3.33	2.44		1.22	
(2H,s)		(8H,q)	(4H,t) (9		(9H,t)	
¹³ C NMR (D ₂ O) of IL	2 (δ, ppm).					
C ^a ,C ^{.b}	Cc	C^d	C ^e , C ^f , C ^g	C ^h , C ⁱ	C^j, C^k, C^l	
180.08	57.51	54.87	53.47	32.03	6.81	

Figure S8. Distribution of ¹H NMR and ¹³C NMR spectra of ionic liquid 3.

Table S3

¹ H NMR	(D_2O)	of IL 3	(δ,	ppm).
--------------------	----------	----------------	-----	-------

H(1)	H(2,3,4,5)	H(6)	H(7,8,9)
3.90	3.30	1.83	1.20
(2H,s)	(8H,q)	(3H,s)	(9H,t)

¹³ C NMR (D ₂ O) of IL 3 (δ , ppm).								
C ^a	C^{b}	C°	C^d	C^{e}, C^{f}	\mathbf{C}^{g}	C^h, C^i, C^j		
181.32	62.62	57.54	54.87	53.47	23.38	6.81		

Figure S9. Distribution of ¹H NMR and ¹³C NMR spectra of ionic liquid 4.

Table S4

¹ H NMR (D ₂ O) of IL	4 (δ, ppm).				
H(1,2)	Н(3,	4,5,6)	H(7,8,9)	
3.85		3.31		1.21	
(4H,d)		(8H,q)		(9H,t)	
¹³ C NMR (D ₂ O) of II	4 (δ, ppm).				
Ca	Cb	Cc	C^d	C ^e , C ^f , C ^g	C ^h , C ⁱ , C ^j
179.87	61.30	57.50	54.87	53.45	6.79

Figure S10. Distribution of ¹H NMR and ¹³C NMR spectra of ionic liquid 5.

Table S5

¹ H NMR (D ₂ O) of IL 5 (δ , ppm).							
Н (1,2,3,4)	H(5)	H(6)	H(7,8,9,10)	H(11)			
3.17	2.08	1.48	1.18	0.82			
(8H,q)	(2H,m)	(2H,m)	(12H,m)	(3H,m)			

¹³ C NMR (D ₂ O)	ofIL	5 (δ,	ppm).
--	------	--------------	-------

Ca	C ^{.b} ,C ^c ,C ^d ,C ^e	$\mathbf{C}^{\mathbf{f}}$	C ^g	\mathbf{C}^{h}	C^i, C^j, C^k, C^l
183.59	52.07	39.69	19.58	13.55	6.82

Figure S12. FT-IR spectra of catalyst: A: fresh, B: recovered.

Figure S13. ¹H NMR spectrum of 4-methyl-1,3-dioxolan-2-one

Figure S14. ¹H NMR spectrum of 4-(chloromethyl)-1,3-dioxolan-2-one

Figure S15. ¹H NMR spectrum of 4-ethyl-1,3-dioxolan-2-one

Figure S16. ¹H NMR spectrum of 4-phenyl-1,3-dioxolan-2-one

Figure. S17. ¹H NMR spectrum of 4-Hexyl-1,3-dioxolan-2-one

Ionic liquid 1:

¹H NMR (400 MHz, DMSO) δ 3.78 (s, 2H), 3.34 (m, 8H), 1.80 (d, *J* = 4.9 Hz, 2H), 1.40 (m, 2H), 1.17 (m, 9H), 0.80 (t, 3H).

0 -10000

-2 -3

-1

-20000

¹H NMR (400 MHz, DMSO) δ3.79 (s, 3H), 3.34 (m, 8H), 1.80 (t, 2H), 1.40 (m, 2H), 1.17 (d, 9H), 0.80 (t, 3H). epichlorohydrin: 3.90 (m, 1H), 3.54 (m, 1H), 3.24 (m, 1H), 2.85 (m, 1H), 2.78 (m, 1H).

Figure S19-2 ¹H NMR spectrum for IL 1 + epichlorohydrin at 25 °C and t = 0.5 h in DMSO

7 6 fl (ppm)

9

8

16 15 14 13 12 11 10

₩, ₩, ₩, ₩ ₌ ¥ 2, 885 2 × 9 × 929 4 3

5

8 8 8 8 8

2

Figure S19-3. (a) ¹H-NMR spectrum for $[N_{2,2,2,20H}][BA]$ in DMSO. (b) ¹H-NMR spectrum for

 $[N_{2,2,2,2OH}][BA]$ + epichlorohydrin at 25 °C and t = 0.5 h in DMSO.