Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

ARTICLE

Supporting Information for Synthesis and characterization of novel copper (II) complexes as potential drug candidates against SARS CoV-2 main protease

Sunil Kumar^a, and Mukesh Choudhary^{a*}

^a Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar) India.

^{a.} *Corresponding author: <u>mukesh@nitp.ac.in</u>

Journal Name

Figure S6.IR spectra of L²H ligand.

This journal is © The Royal Society of Chemistry 20xx

Journal Name

S8. IR spectrum of copper(II) Schiff base complex $[Cu(L^2)(CH_3OH)(CI)](2).$

A packing view of copper (II) complex Figure S11. [Cu(L²)(CH₃OH)(Cl)](2)(along the a-axis).

Figure S9. Electronic spectra (1×10^{-3} M) of copper (II) Schiff base complex $[Cu(L^1)_2](1)$ and $[Cu(L^2)(CH_3OH)(CI)](2)$.

Figure S13 . Frontier molecular orbitals of copper (II) Schiff base complex $[Cu(L^1)_2](1)$.

Journal Name

Figure S14.Frontier molecular orbital diagram of copper (II) complex [Cu(L²)(CH₃OH)(Cl)](**2**).

Figure S15. Electrostatic potential maps of copper (II) Schiff base complex $[Cu(L^1)_2](1)$.

Journal Name

Figure S18. Graphical view of the Hirshfeld surfaces (full portion) mapped with d_{norm} property; red spots represents the closest contacts and blue color the most distant contacts for copper (II) Schiff base complex [Cu(L²)(CH₃OH)(Cl)](**2**).

Figure S17. Graphical view of the Hirshfeld surfaces (full portion) mapped with d_{norm} property; red spots represents the closest contacts and blue color the most distant contacts for copper (II) Schiff base complex [Cu(L¹)₂](**1**).

Crystal Void $[Cu(L^1)_2](1)$

Crystal Void - - - [Cu(L²)(CH₃OH)(Cl)](2)

ARTICLE

[Cu(L1)2](1)-

Promolecule Density [Cu(L²)(CH₃OH)(Cl)](2)

Figure S19. Crystal void and promolecule density surface of copper (II) Schiff base complex $[Cu(L^1)_2](1)$ and $[Cu(L^2)(CH_3OH)(CI)](2)$.

Figure S20. The representation of docked copper (II) complex $[Cu(L^1)_2](1)$ inside the M^{pro} protein (PDB ID: 7BRP) with its focused view for interacting residues along with H bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colours, respectively; (b) Aromatic receptor surface represented by blue(Edge) and orange(face) colours; (c) Hydrophobic pocket represented with blue and brown colours; (d) ionizability receptor surface represented by blue (basic) and red (acidic) colours; (e) interpolated charge receptor surface represented by blue and red colours; (f) SAS receptor surface represented by blue and green colours, respectively.

Figure S21. The representation of docked copper (II) complex $[Cu(L^1)_2](1)$ inside the M^{pro}protein (PDB ID: 7BUY) with its focused view for interacting residues along with H-bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colours, respectively; (b) Aromatic receptor surface represented by blue(Edge) and orange (face) colours; (c) Hydrophobic pocket represented with blue and brown colours; (d) ionizability receptor surface represented by blue (basic) and red (acidic) colours; (e) interpolated charge receptor surface represented by blue and red colours; (f) SAS receptor surface represented by blue and light green colours, respectively.

Journal Name

S22.The representation of Figure docked copper (11) complex[Cu(L^2)(CH₃OH)(Cl)](2) inside the M^{pro} protein (PDB ID: 7BUY) with its focused view for interacting residues along with H bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colors, respectively; (b) Aromatic receptor surface represented by blue(Edge) and orange(face) colours; (c) Hydrophobic pocket represented with blue and brown colours; (d) ionizability receptor surface represented by blue (basic) and red (acidic) colours; (e) interpolated charge receptor surface represented by blue and red colours; (f) SAS receptor surface represented by blue and light green colours, respectively.

Figure S23.The representation of docked copper (II) complex[Cu(L²)(CH₃OH)(Cl)](**2**) inside the M^{pro} protein (PDB ID: 7BRP) with its focused view for interacting residues along with H bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colours, respectively; (b) Aromatic receptor surface represented by blue(Edge) and orange(face) colours; (c) Hydrophobic pocket represented with blue and brown colours; (d) ionizability receptor surface represented by blue (basic) and red (acidic) colours; (e) interpolated charge receptor surface represented by blue and red colours; (f) SAS receptor surface represented by blue and light green colours, respectively.

Figure S24. Two-dimensional Lig-plot image of complex $[Cu(L^1)_2]$ (1) with SARS-CoV-2 main protease (M^{pro}- 7BUY and 7BRP).

Figure S25. Two-dimensional Ligplot image of the complex $[Cu(L^2)(CH_3OH)(CI)](2)$ with SARS-CoV-2 main protease (M^{pro_} 7BUY and 7BRP).

FigureS26. Graphical representation of antibacterial activity for the copper (II) Schiff base complex $[Cu(L^1)_2]$ (1) and $[Cu(L^2)(CH_3OH)(CI)]$ (2).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
(1)				
C(11)-H(11)Br(1)#1	0.95	3.02	3.851(3)	147.0
C(29)-H(29)Br(1)#2	0.95	3.07	3.960(3)	157.2
(2)	•			
C(14)-H(14)O(2)#1	0.95	2.52	3.424(9)	158.1
O(3)-H(3A)Cl(4)#2	0.84	2.20	3.018(5)	163.3

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+2 #2 x,y+1,z for (1);

#1 y-1/2,-x+1,z-1/4 #2 -x+1,-y+1,z for (2)

	(1)	(2)
Е _{номо}	-11.358	-7.251
E _{LUMO}	-10.823	-5.623
ΔΕ	0.535	1.628
E _{HOMO-1}	-12.025	-7.861
E _{LUMO+1}	-9.822	-5.349
ΔΕ	2.203	2.512
E _{HOMO-2}	-12.153	-8.253
E _{LUMO+2}	-8.811	-5.649
ΔΕ	3.342	2.604

 $\label{eq:table_to_$

^a Energy gap (ΔE) = E_{LUMO} - E_{HOMO} ; units in eV.

	(1)	(2)
IP	11.358	7.251
EA	10.823	5.623
X	11.091	6.437
η	0.634	0.407
μ	-11.091	-6.437
ω	97.011	50.903
σ	0.789	1.229

IP= ionization potential, *EA*= electron affinity, χ = electro negativity, μ =chemical potential, η = global hardness, σ =global softness and ω = global electrophilicity; units in *eV*. **Table S4.** Interaction energies for complex $[Cu(L^1)_2]$ (1) calculated with CE-B3LYP model. It can be seen from the interaction energies that the hydrogen bonding motif between the central molecules (highlighted in yellow mesh) and the -x +1/2, y +1/2, z +1/2 symmetry-related molecule (line green) is by far the strongest interaction among near neighbours, with interaction energy of -41.2 kJ mol⁻¹.

-	1	Comp		1)	-			-		
N	Symop	R	Electron Density	E_ele	E	pol	E_dis	E_	rep	E_tot
	2 x, y, z	11.18	HF/3-21G	-11.9	1	-4.2	-52.6	2	23.0	-43.7
	1 -x, -y, -z	6.96	HF/3-21G	-27.7	-	10.1	-111.7	5	52.3	-93.0
	2 x, y, z	12.55	HF/3-21G	0.0		-1.1	0.0		0.0	-0.7
	1 -x, -y, -z	10.07	HF/3-21G	-23.0		-6.6	-112.3	6	5.8	-75.5
	2 x, y, z	12.54	HF/3-21G	0.0		-0.9	0.0		0.0	-0.6
	1 -x, -y, -z	10.54	HF/3-21G	-16.7		-5.5	-57.0	3	30.6	-47.1
	1 -x, -y, -z	12.26	HF/3-21G	0.0		-3.2	0.0		0.0	-2.1
	1 -x, -y, -z	10.25	HF/3-21G	-20.5		-5.2	-95.5	5	58. 7	-62.7
	1 -x, -y, -z	11.49	HF/3-21G	-7.3		-2.5	-44.1	2	21.3	-31.5
	1 -x, -y, -z	12.35	HF/3-21G	0.0		-1.9	0.0		0.0	-1.3
	1 -x, -y, -z	11.81	HF/3-21G	-1.6		-2.3	-15.2		5.1	-12.7
Energy	Model			k_e	le	k_p	ol k_	disp	k_r	ep
CE-HF HF/3-21G electron densities			1.(019	0.6	51 0.	901	0.8	311	
CE-B3LYP B3LYP/6-31G(d,p) electron densities			es 1.0	057	0.7	40 0.	871	0.6	518	

Table S5. Interaction energies for complex $[Cu(L^2)(CH_3OH)(CI)](2)$ calculated with CE-B3LYP model. It can be seen from the interaction energies table that the hydrogen bonding motif between the central molecules (highlighted in yellow mesh) and the -x +1/2, y +1/2, z +1/2 symmetry-related molecule (line green) is by far the strongest interaction among near neighbors, with interaction energy of -44.6 kJmol⁻¹.

Ν	Symop	R	Electro	on Densit	y E_ele	E_po	E_dis	E_rep	E_tot
1	-x, -y, z	8.45	HF/3-21G		-8.	4 -2.	6 -47.3	25.3	-32.3
2	x+1/2, y+1/2, z+1/2	14.30) HF/3-21G		0.	0 -1.	B 0.0	0.0	-1.3
2	-y, x+1/2, z+1/4	13.78	78 HF/3-21G		0.	0 -0.	5 0.0	0.0	-0.3
2	y+1/2, -x, z+3/4	6.51	.51 HF/3-21G		-60.	7 -38.	-67.9	46.0	-110.4
2	-x+1/2, -y+1/2, z+1/2	12.95	95 HF/3-21G		0.	0 -1.	9 0.0	0.0	-1.3
1	-x, -y, z	7.08	7.08 HF/3-21G		-183.	6 -71.	7 -76.0	150.3	-180.3
2	-y, x+1/2, z+1/4	14.73	HF/3-3	21G	0.	0 -0.	4 0.0	0.0	-0.
2	-x+1/2, -y+1/2, z+1/2	11.34	HF/3-21G		-12.	9 -2.	1 -14.1	6.9	-21.
2	-y+1/2, x, z+3/4	7.87	HF/3-21G		8.	6 -6.	2 -33.2	13.5	-14.3
nergy Model			k_ele	k_pol	k_disp	k_rep			
E-HF HF/3-21G electron densities			1.019	0.651	0.901	0.811			
E-B3LYP B3LYP/6-31G(d,p) electron densities			1.057	0.740	0.871	0.618			

Table S6. The structure activity relationship established between the structures and their potential applications against SARS-CoV-2 main protease(M^{pro}) of the copper complex(II) [Cu(L¹)₂](**1**) and [Cu(L²)(CH₃OH)(CI)] (**2**)].

Comp	lexes	Experimental bond lengths (Å)		Docked complex inside SARS-CoV-2 bond lengths (Å)		
(1)	7BUY	Cu(1)-O(1)	1.8926	Cu(1)-O(1)	1.8931	
		Cu(1)-O(3)	1.8898	Cu(1)-O(3)	1.8902	
		Cu(1)-N(1)	1.9738	Cu(1)-N(1)	1.9751	
		Cu(1)-N(2)	1.9784	Cu(1)-N(2	1.9772	
	7BRP	Cu(1)-O(1)	1.8926	Cu(1)-O(1)	1.8927	
		Cu(1)-O(3)	1.8898	Cu(1)-O(3)	1.8899	
		Cu(1)-N(1)	1.9738	Cu(1)-N(1)	1.9732	
		Cu(1)-N(2	1.9784	Cu(1)-N(2	1.9779	
(2)	7BUY	Cu(1)-O(1)	2.084	Cu(1)-O(1)	2.016	
		Cu(1)-O(2)	1.917	Cu(1)-O(2)	1.918	
		Cu(1)-O(3)	1.993	Cu(1)-O(3)	1.994	
		Cu(1)-N(1)	1.952	Cu(1)-N(1)	1.954	
	7BRP	Cu(1)-O(1)	2.084	Cu(1)-O(1)	2.082	
		Cu(1)-O(2)	1.917	Cu(1)-O(2)	1.915	
		Cu(1)-O(3)	1.993	Cu(1)-O(3)	1.995	
		Cu(1)-N(1)	1.952	Cu(1)-N(1)	1.954	

Table S7. Antibacterial screening activity of the copper(II) complex $[Cu(L^1)_2](1)$ and $[Cu(L^2)(CH_3OH)(CI)]$ (2)].

Complexes (mM)	Diameter of inhibition zone (in mm)		
	E. coli	S. aureus	
(1)			
5	8	7	
10	11	9	
15	19	14	
(2)			
5	7	6	
10	9	8	
15	17	12	
Antibiotic			
5	25	20	
DMSO			
5	0	0	

Note: Key to interpretation (5-15mM): less than 8 mm, inactive; 9-13 mm, moderately active; above 14 mm, highly active. DMSO (control) shows not clear inhibition zone. Each value is observed within the estimated error limits of ± 1 mM.