1D Chiral Infinite Chain Organic Metal Halide Hybrid with Excellent SHG Switch and Moderate Spontaneous Polarization

Jia-Chang Zhuang, Yui-Hui Tan*a, Xiao-Wei Fan*b, Yun-Zhi Tang*b, Ning Song,

Yi-Hua Zhang, Hao Zhang and Shao-Peng Chen

EXPERIMENTAL SECTIONS

Synthesis

All chemical reagents are purchased directly. For the chemical synthesis of **1**, stoichiometric Sb₂O₃ (1 mmol) and (S)-3-hydroxypyrrolidine hydrochloride (3 mmol) were slowly dissolved together in 5 mL of acetonitrile and hydrochloric acid (pH = 2), and then, the mixture was stirred for half an hour and filtrated. The colorless lamellar crystals of **1** were obtained after one week of slow evaporation. the yield (1.243 g) is 72.3% based on (S)-3-hydroxypyrrolidine hydrochloride. Elemental analysis for ((C₄H₁₀NO)₂SbCl₅), Calc. (%), C, 20.218; H, 4.240; N, 5.890; O, 6.730; Sb, 25.618; Cl, 37.298. Found (%), C, 20.268; H, 4.238; N, 5.891; O, 6.742; Sb, 25.623; Cl, 37.238. The powder X-ray diffraction (PXRD) (**Figure S1**) and Infrared absorption (IR) spectroscopy (**Figure S2**) results confirm the phase purity of the obtained crystals. As shown in **Figure S2**, 3490 cm⁻¹ is the characteristic peak of -OH. The absorption peak near 3300-2800 cm⁻¹ was derived from the stretching vibration of C-H, and near 3500-3400 cm⁻¹ was derived from the stretching vibration of N-H. Near 1350-1000 cm⁻¹ is the absorption peak of C-N stretching vibration.

Single Crystal X-Ray Diffraction.

The crystal structures of **1** were determined at 300 K by single crystal X-ray diffraction analyses. The data were corrected for L_p and absorption effects. Their crystal structures were solved by direct methods with the Olex 2 program. The crystal data and structure refinement for **1** are shown in **Table S1**. Their selected intra-atomic distances and bond angles are given in **Tables S2** and **S3**. Their hydrogen bonds parameters are given in **Table S4**.

Measurements. Powder X-ray diffraction (PXRD) patterns were carried out on a Rigaku D/MAX 2000 PC X-ray diffraction instrument with Cu radiation ($K_{\alpha 1}$ =1.54060 Å, $K_{\alpha 2}=1.54443$ Å). The data were collected during the heating process in the temperature range of 230-300 K for a θ in the range of 5-50°. DSC measurements were performed by heating / cooling the powder sample at a rate of 15 K / min on a PerkinElmer Diamond DSC instrument. Thermogravimetric analysis (TGA) measurement was performed on a TA-Instruments STD2960 system from room temperature to 1050 K at a rate of 10 K / min under a nitrogen atmosphere. The dielectric constant of compounds 1 is measured by Agilent or TH2828A impedance analyzer. During heating and cooling, the powder particle sample is measured at a rate of 5 K / min. The SHG signals were measured through an FLS 920 Edinburgh instrument on a laser with low divergence (Nd: YAG, 1064 nm, 5 ns, 1.6 MW peak power, 10 Hz repetition rate). The laser is a Vibrant 355 II, OPOTEK. The ferroelectric hysteresis loop was measured on a standard RT 6000 ferroelectric tester (Albuquerque, USA). UV-vis absorption spectra were obtained using a Shimadzu (Tokyo, Japan) UV-2550 spectrophotometer in the range of 200-800 nm. The band structure and PDOS were performed by the DFT method within the total-energy code CASTEP.

Figure S1. Simulation and measurement PXRD patterns of 1 at room temperature.

Figure S2. Infrared absorption (IR) spectroscopy of 1.

Figure S3. The TG-DTA (thermo gravimetric analysis and differential thermal analysis) curves of **1**.

Figure S4. The H-bonds in the crystal structure of 1.

Figure S5. Asymmetric unit of 1 at room temperature.

Figure S6. Oscilloscope traces of SHG signals for 1 at room temperature.

Figure S7. Calculated band structure of 1.

Table S	51 . The	crystallo	graphic	data	of 1.

Empirical formula	C8H20Cl5N2O2Sb
Formula weight	475.26
Temperature (K)	300 K
Crystal system	orthorhombic
Space group	P212121
<i>a</i> (Å)	8.7467(4)
<i>b</i> (Å)	11.3654(5)
<i>c</i> (Å)	17.6409(9)
$V(Å^3)$	1753.68(14)
Ζ	4
Density (g/cm ³)	1.800
m (mm ⁻¹)	2.331
<i>F</i> (000)	936.0
Date/restraints/parameters	3074/179/137

GOF	1.153
$R_1, wR_2[I > 2\sigma(I)]$	$R_1 = 0.0877, wR_2 = 0.2589$
R_1 , w R_2 (all data)	$R_1 = 0.1032, wR_2 = 0.2891$
$\Delta ho_{ m max} / \Delta ho_{ m min} (e { m \AA}^{-3})$	1.61/-0.98

Table S2. Bond lengths (Å) for 1.

Bond	Lengths(Å)	Bond	Lengths(Å)
Sb1-Cl2	2.964(9)	C3-C4	1.4857(14)
Sb1-Cl5	2.544(7)	C4-N1A	1.4852(14)
Sb1-Cl4	2.421(6)	O2-C6	1.4311(14)
Sb1-Cl3	2.431(7)	C8-C7	1.5013(14)
Sb1-Cl1	2.696(8)	C8-N2	1.4851(14)
O1-C3	1.4309(14)	C7-C6	1.4852(14)
C1-C2	1.5011(14)	C6-C5	1.4852(14)
C1-N1A	1.4849(14)	C5-N2	1.4851(14)
C2-C3	1.4850(14)		

Table S3. Bond angles (°) for 1.

Bond	Angles (°)	Bond	Angles (°)
C15-Sb1-C12	89.6(3)	O1-C3-C2	106.99(14)
Cl5-Sb1-Cl1	177.9(3)	O1-C3-C4	106.98(14)
Cl4-Sb1-Cl2	176.0(3)	C2-C3-C4	103.96(13)
Cl4-Sb1-Cl5	90.4(2)	C3-C4-N1A	104.71(13)
Cl4-Sb1-Cl1	91.6(3)	C1-N1A-C4	108.0(5)
C13-Sb1-C12	86.2(3)	N2-C8-C7	107.31(13)
C13-Sb1-C15	91.2(3)	C6-C7-C8	103.91(12)
C13-Sb1-C14	89.7(3)	O2-C6-C7	106.97(14)
C13-Sb1-C11	89.1(4)	O2-C6-C5	106.97(14)

C11-Sb1-C12	88.4(3)	C7-C6-C5	103.94(13)
N1A-C1-C2	105.0(8)	C6-C5-N2	104.71(13)
C3-C2-C1	103.93(13)	C5-N2-C8	96.7(3)

Table S4. Hydrogen bonds of 1 at 300 K.

D-HA	D(D-H)	D(HA)	< DHA	d(DA)
O1-H1Cl1	0.82	2.30	157	3.068
N2-H2Cl4	1.07	2.04	130	2.853
N1A- H1AbCl1	0.89	2.64	144	3.40
N2-H2CCl4	0.89	2.82	151	3.625

Calculation of the ΔS and N value for compounds in the heating and cooling cycles

Calculation of ΔS_l and N in the heating cycle

$$\Delta S_{1} = \int_{T^{1}}^{T^{2}} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{T^{c}}$$

$$= \frac{10.2468 J \cdot g^{-1} \times 469.21 g \cdot mol^{-1}}{266.6 K}$$

$$= 18.03 J \cdot mol^{-1} \cdot K^{-1}$$

$$\Delta S_{1} = R \ln N_{1}$$

$$\Delta S_{2} \qquad (18.03 J \cdot mol^{-1} \cdot K^{-1})$$

$$N_{1} = \exp(\frac{\Delta S_{1}}{R}) = \exp\left(\frac{18.03 J \cdot mol^{-1} \cdot K^{-1}}{8.314 J \cdot mol^{-1} \cdot K^{-1}}\right)$$
$$= 2.17$$

Calculation of ΔS_2 and N in the cooling cycle

$$\Delta S_2 = \int_{T^1}^{T^2} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{T^c}$$

= $\frac{7.9318 J \cdot g^{-1} \times 469.21 g \cdot mol^{-1}}{263 K}$
= $14.15 J \cdot mol^{-1} \cdot K^{-1}$
 $\Delta S_2 = R \ln N_2$
 $N_2 = \exp(\frac{\Delta S_2}{R}) = \exp\left(\frac{14.15 J \cdot mol^{-1} \cdot K^{-1}}{8.314 J \cdot mol^{-1} \cdot K^{-1}}\right)$

= 1.70