Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Self-assembly solvothermal synthesis of SiMoV_n@[Cu₆O(TZI)₃(H₂O)₆]₄·nH₂O for efficient selective oxidation of various alkylbenzene

Jiabin Liu, Yuxiang Xin, Yiyang Bai, Wei She, Jing Wang, Gaungming Li*

Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, Heilongjiang, China. E-mail: gmli@hlju.edu.cn

Fig. S1 Composition of four types of cages in complexes 1-3.

Parameters	2
Empirical formula	$C_{108}H_{36}Cu_{24}Mo_{10}N_{48}O_{118}Si_1V_2$
CCDC No.	2054498
Formula weight	6476.18
Crystal system	cubic
Space group	Fm3m
Unit cell	<i>a=b=c</i> =44.361(5) Å
	$\alpha = \beta = \gamma = 90^{\circ}$
Volume	87298(30) Å ³
Ζ	8
Density (Calcd)	0.985 g·cm ⁻³
Temperature	293.00 (2) K
Wavelength	0.71069 Å
Reflections collected	3732
μ	1.512 mm ⁻¹
F(000)	25024
Final R_1^a , wR_2^b [I >2 σ (I)]	0.0858, 0.1140
Final R_1^a , wR_2^b (all data)	0.2228, 0.2640
GOF on F^2	1.064

 Table S1. Crystallographic data for complex 2.

Fig. S2 Complex 2 framework with *lta* topology :(a) Without SiMoV₂; (b) Containing SiMoV₂.

Fig. S3 (a) Nitrogen isothermal adsorption curve and pore size distribution of complex 1; (b) SEM image and EDS mappings of complex 1; (c) EDX spectrum; (d) The values of elements of complex 1.

Fig. S4 (a) Nitrogen isothermal adsorption curve and pore size distribution of complex 2; (b) SEM image and EDS mappings of complex 2; (c) EDX spectrum; (d) The values of elements of complex 2.

Fig. S5 Cyclic voltammograms of $SiMoV_{1/2/3}$

¹H NMR, ¹³C NMR of catalytic oxidation products of complex 3

Benzoic acid

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.97 (s, 1H, -COOH), 7.96 (d, *J* = 8.0 Hz, 2H, Ph-H), 7.60 (t, *J* = 7.3 Hz, 1H, Ph-H), 7.48 (t, *J* = 7.6 Hz, 2H, Ph-H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.8 (-COOH), 133.3 (Ph-C), 131.2 (Ph-C), 129.7 (Ph-C), 129.0 (Ph-C).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.80 (s, 1H, -COOH), 7.85 (d, *J* = 8.0 Hz, 2H, Ph-H), 7.24 (d, *J* = 8.0 Hz, 2H, Ph-H), 2.32 (s, 3H, -CH₃).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 167.8 (-COOH), 143.4 (Ph-C), 129.8 (Ph-C), 129.5 (Ph-C), 128.5 (Ph-C), 21.5 (-CH₃).

Acetophenone

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 7.7 Hz, 2H, Ph-H), 7.43 (t, *J* = 7.3 Hz, 1H, Ph-H), 7.33 (t, *J* = 7.6 Hz, 2H, Ph-H), 2.46 (s, 3H, -CH₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ 197.8 (-CO-), 137.0 (Ph-C), 133.0 (Ph-C), 128.5 (Ph-C), 128.2 (Ph-C), 26.4 (-CH₃).

2-phenyl-2-propanol

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.49 (d, *J* = 7.7 Hz, 2H, Ph-H), 7.30 (t, *J* = 7.6 Hz, 2H, Ph-H), 7.19 (t, *J* = 7.0 Hz, 1H, Ph-H), 5.03 (s, 1H, -OH), 1.45 (s, 6H, -CH₃).
¹³C NMR (101 MHz, DMSO-*d*₆) δ 151.0 (Ph-C), 128.2 (Ph-C), 126.3 (Ph-C), 125.0 (Ph-C), 71.1 (C-OH), 32.4 (-CH₃).

Tetralone

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 9.4 Hz, 1H Ph-H), 7.38 – 7.21 (m, 1H Ph-H), 7.21 – 6.96 (m, 2H Ph-H), 2.92 – 2.65 (m, 2H, -CH₂), 2.59 – 2.38 (m, 2H, -CH₂), 2.10 – 1.78 (m, 2H, -CH₂).

¹³C NMR (101 MHz, Chloroform-*d*) δ 197.9 (-CO-), 144.4 (Ph-C), 133.2 (Ph-C), 132.5 (Ph-C), 128.7 (Ph-C), 126.9 (Ph-C), 126.4 (Ph-C), 39.0 (-CH₂), 29.5 (-CH₂), 23.2 (-CH₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 7.3 Hz, 2H, Ph-H), 7.49 (q, *J* = 7.5 Hz, 4H, Ph-H), 7.30 (t, *J* = 7.1 Hz, 2H, Ph-H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 193.9 (-CO-), 144.4 (Ph-C), 134.7 (Ph-C), 134.1 (Ph-C), 129.1 (Ph-C), 124.3 (Ph-C), 120.3 (Ph-C).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 7.8 Hz, 4H, Ph-H), 7.62 (t, *J* = 7.3 Hz, 2H, Ph-H), 7.51 (t, *J* = 7.5 Hz, 4H, Ph-H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 196.8 (-CO-), 137.6 (Ph-C), 132.5 (Ph-C), 130.1 (Ph-

C), 128.3 (Ph-C).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 8.1 Hz, 2H, Ph-H), 7.72 (d, *J* = 8.1 Hz, 2H, Ph-H), 7.66 (d, *J* = 7.6 Hz, 2H, Ph-H), 7.50 (t, *J* = 7.4 Hz, 2H, Ph-H), 7.43 (t, *J* = 7.2 Hz, 1H, Ph-H), 2.67 (s, 3H, -CH₃).

¹³C NMR (101 MHz, Chloroform-*d*) δ 197.8 (-CO-), 145.8 (Ph-C), 139.9 (Ph-C), 135.9 (Ph-C), 129.0 (Ph-C), 128.9 (Ph-C), 128.3 (Ph-C), 127.3 (Ph-C), 127.3 (Ph-C), 26.7 (-CH₃).

Fig. S6 1 H NMR (a), 13 C NMR (b) and MS (c) spectra of benzoic acid

Fig. S7 $^1\!\mathrm{H}$ NMR (a), $^{13}\!\mathrm{C}$ NMR (b) and MS (c) spectra of p-toluic-acid

Fig. S8 $^1\!\mathrm{H}$ NMR (a), $^{13}\!\mathrm{C}$ NMR (b) and MS (c) spectra of acetophenone

Fig. S9 1 H NMR (a), 13 C NMR (b) and MS (c) spectra of 2-phenyl-2-propanol

Fig. S10 1 H NMR (a), 13 C NMR (b) and MS (c) spectra of tetralone

Fig. S11 ¹H NMR (a), ¹³C NMR (b) and MS (c) spectra of fluorenone

Fig. S12 1 H NMR (a), 13 C NMR (b) and MS (c) spectra of benzophenone

Fig. S13 ¹H NMR (a), ¹³C NMR (b) and MS (c) spectra of 4-phenylacetophenone

Fig. S14 Reaction rates as a function of V/Mo molar ratio in complexes 1-3.

Fig. S15 Fluxion of V^{5+} and V^{4+} ions evidenced by XPS spectrum.