Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

A Class III asymmetric binuclear cyanido-bridged mixed-valence complex

Xiao-Lin Liu,^{ab} Yi Li,^{ab} Qing-Dou Xu,^b Zi-Qin Wei,^b Xin-Tao Wu^b and Tian-Lu Sheng^{*b}

^aCollege of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese

Academy of Science, Fuzhou, Fujian 350002, P. R. China

E-mail: tsheng@fjirsm.ac.cn

1

Figure S1. Molecular structure of compound **[Cp*(dppe)Ru(NO)][BF₄]**₂. Hydrogen atoms , and solvent molecules have been omitted for clarity. Ru dark blue, P pink, C white, N blue, F green, B yellow, O red. The Ru-P bond length are 2.3792(7) and 2.4119(6) Å.

	1[BF ₄]·CH ₂ Cl ₂	1[BF ₄] ₂	[Cp*(dppe)Ru (NO)][BF ₄] ₂
Empirical formula	$C_{58}H_{57}BCI_3F_4N_5P_2Ru_2$	$C_{58}H_{57}B_2CI_3F_8N_5P_2Ru_2$	$C_{36}H_{39}B_2F_8NOP_2Ru$
Color and Habit	Red purple block	Dark red block	Light orange plate
Crystal Size (mm)	0.230×0.150×0.230	0.230×0.130×0.120	0.230×0.110×0.110
Temperature(K)	293(2)	293(2)	293(2)
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	P21/n	P-1	P-1
a (Å)	11.0409(3)	12.2343(4)	8.87820(10)
b (Å)	12.7863(4)	13.0543(4)	12.3726(2)
c (Å)	39.5972(12)	21.7618(3)	18.0161(2)
alpha (deg.)	90	86.764(2)	84.1790(10)
beta (deg.)	91.115(2)	78.308(2)	78.8260(10)
gamma (deg.)	90	62.126(3)	73.611(2)
Volume(Å ^3)	5589.0(3)	3005.65(16)	1860.30(5)
Z	4	2	2
Formula weight	1281.32	1368.13	838.31
Density(cal.)(Mg/m^3)	1.523	1.512	1.497
μ(mm⁻¹)	4.504	4.274	3.243
F(000)	2600.0	1382.0	852.0
Theta range (deg.)	3.88 to 121.284	6.666 to 121.182	9.166 to 121.82
Reflections collected / unique	47272 / 12488 [R(int) = 0.0596]	41976 / 13232 [R(int) = 0.0957]	25889 / 8310 [R(int) = 0.0368]
Index range	-14<=h<=10, -16<=k<=15, -51<=l<=51	-15<=h<=15, -16<=k<=16, -27<=l<=27	-11<=h<=11, -12<=k<=16, -23<=l<=22
Data/restraints/parameters (obs.)	12488/0/681	13232/47/736	8310/19/538

Table S1. Crystallographic data for 1[BF₄] and 1[BF₄]₂.

_

Final R indices (obs.)	$R_1 = 0.0420,$	$R_1 = 0.0760,$	$R_1 = 0.0403,$
	$wR_2 = 0.1042$	w $R_2 = 0.2063$	w $R_2 = 0.1085$
R indices (all)	$R_1 = 0.0582,$	$R_1 = 0.0895,$	$R_1 = 0.0444,$
	w $R_2 = 0.1120$	w $R_2 = 0.2178$	w $R_2 = 0.1111$
Goodness-of-fit	1.057	1.051	1.034

 $R_1 = \Sigma(||F_0| - |F_c||)/\Sigma|F_0|;$

 $wR_2 = [\Sigma w(|F_0^2| - |F_c^2|)^2 / \Sigma w |F_0^2|^2]^{1/2}$

Figure S2. IR_{KBr} spectra of **1[BF₄]** (2090 cm⁻¹).

Figure S3. IR_{KBr} spectra of $1[BF_4]_2$ (2000 cm⁻¹).

Table S2. Experimental data and TDDFT data of the MMCT band (in CH_2Cl_2) for MV complex $1[BF_4]_2$.

	λ (cm ⁻¹)
Experimental data	8461 cm ⁻¹ , (ε = 4116 M ⁻¹ cm ⁻¹)
TDDFT data	7255 cm ⁻¹

Table S3. Data of the electron spin density for MV complex 1[BF₄]₂.

complexes	Ru(1)	Ru(2)
1[BF ₄] ₂	0.473	0.406

Table S4. Calculated and experimental electronic absorption in CH₂Cl₂ of 1[BF₄]₂ (MMCT).

Complex	Excitation (percentage)
	– HOMO (239B) → LUMO (240B) (65%)
1[BF ₄] ₂	HOMO-2 (237B) → LUMO (240B) (22%)
	HOMO-3 (236B) → LUMO (240B) (7%)
	HOMO-1 (238B) → LUMO (240B) (3%)

Figure S4. Molecular orbital diagrams of HOMO-10 (229B), HOMO-7 (232B), HOMO-6 (233B) and LUMO (240B) of **1[BF₄]**₂ in dichloromethane (isocontour value: 0.02 [e/b3]1/2).

Complex	Excitation (percentage)
	HOMO-10 (229B) → LUMO (240B) (12%)
1[BF ₄] ₂	HOMO-7 (232B) → LUMO (240B) (23%)
	HOMO-6 (233B) → LUMO (240B) (36%)

Table S5. Calculated and experimental electronic absorption in CH₂Cl₂ of 1[BF₄]₂ (LMCT).

Table S6. Theoretical bond lengths (Å) for 1[BF₄] and 1[BF₄]₂.

_

	1[BF ₄]	1[BF ₄] ₂
Ru(1)-C(1)	2.0039	1.9743
Ru(1)-P(1)	2.4193	2.4573
Ru(1)-P(2)	2.4223	2.4586
Ru(1)-N(1)	2.0966	2.0116
Ru(2)-N(3)	2.0665	2.0791
Ru(2)-N(4)	2.0771	2.0895
Ru(2)-N(5)	2.0757	2.0948
Ru(2)-N(6)	2.0554	2.0972
Ru(2)-Cl(1)	2.5073	2.4708
N(1)≡C(1)	1.1939	1.2016

Figure S5. Cyclic voltammogram of [Cp*(dppe)RuCN] recorded in $CH_2Cl_2/0.1M$ [TBA]PF₆ at 100 mV s⁻¹ scan rate.

Author Contributions

X.-L. L. synthesized and characterized the molecules. T.-L. S. performed and analysed the DFT/TDDFT calculations.Y. L. contributed to the determination of single crystal structure. T.-L. S. and X.-L. L. wrote the text. T.L.S. conceived and supervised the project. All authors discussed the results and contributed to the writing of the manuscript.

Optimized Cartesian Coordinates of 1[BF₄]₂

Ru	-1.90613	-0.26395	0.940226	С	-6.53034	2.764315	-0.79301
Ru	3.112906	-0.13269	-0.31981	н	-7.39839	2.426624	-1.35276
Р	-2.44009	-1.43751	-1.1517	С	-6.62712	-1.53377	-1.34507
Р	-2.48025	1.682492	-0.44771	н	-7.46116	-1.21128	-0.72687
Cl	2.718884	-1.43951	-2.3794	С	-5.05626	0.143948	2.573206
Ν	3.159189	1.523292	-1.60187	н	-5.1906	1.072025	2.007519
Ν	1.149872	-0.05475	0.112456	н	-5.39139	0.339773	3.601774
Ν	3.64189	0.780907	1.471315	н	-5.73194	-0.61039	2.159153
Ν	3.264883	-1.78048	0.955965	С	3.7538	-2.52599	3.20615
С	-1.63211	-3.10083	-1.4532	н	4.042009	-2.30155	4.226843
С	-0.02314	-0.11293	0.36642	С	4.454706	1.81858	3.949026
Ν	5.125155	-0.1131	-0.91051	н	4.776933	2.217473	4.905786
С	-4.15215	2.543247	-0.26291	С	4.234418	2.673461	2.851488
С	-3.62436	-0.3282	2.583975	н	4.381372	3.745089	2.933938
С	5.449029	0.822512	-1.86321	С	4.472944	2.7233	-3.24174
С	-4.26798	3.637498	0.625918	н	5.411695	2.871178	-3.76223
н	-3.39792	4.00918	1.159867	С	2.08671	2.296608	-1.91161
С	4.35115	1.72587	-2.25795	н	1.174508	2.088377	-1.36963
С	-1.74153	-1.72727	2.729612	С	3.828359	2.118759	1.631623
С	-4.21765	-1.73237	-1.6967	н	3.648606	2.736644	0.760431
С	-1.78862	-0.25255	-2.49065	С	-4.46138	-2.37088	-2.93561
н	-0.69868	-0.22351	-2.40518	н	-3.63493	-2.71803	-3.55114
н	-2.04564	-0.64812	-3.47951	С	-6.86701	-2.16952	-2.57667
С	-2.40651	1.147895	-2.2965	Н	-7.88552	-2.34343	-2.91296
Н	-3.42637	1.172929	-2.6906	С	3.511248	-3.85576	2.823573
н	-1.82526	1.898188	-2.84194	н	3.613652	-4.6598	3.545823
С	-3.15843	-1.6779	2.399052	С	-6.63962	3.852981	0.091645
С	-1.32466	3.170207	-0.32945	н	-7.59162	4.360452	0.220264
С	-4.00134	-2.89013	2.107622	С	7.718792	-0.03753	-1.97432
н	-3.42969	-3.67155	1.597876	Н	8.720441	-0.00924	-2.39155
н	-4.8813	-2.66039	1.502255	С	-1.45152	4.233156	-1.25382
н	-4.35953	-3.31789	3.05556	Н	-2.18831	4.185	-2.05256
С	3.849259	-0.06611	2.537603	С	3.021512	-3.06612	0.585269
С	-2.49712	0.469609	3.058297	н	2.742747	-3.21125	-0.45196
С	-5.30558	-1.31313	-0.90906	С	7.373825	-0.99182	-0.99958
н	-5.12747	-0.80791	0.03329	Н	8.093414	-1.72077	-0.64318
С	-1.34557	-0.40178	3.17045	С	-0.43583	-5.62411	-1.88216
С	-0.90343	-2.97532	2.801611	н	0.016858	-6.59501	-2.06624
н	-1.07154	-3.49645	3.756154	С	-1.74983	-5.5417	-1.37945
н	0.165332	-2.74781	2.732497	н	-2.31264	-6.4477	-1.17088
н	-1.14674	-3.67762	1.99747	С	3.13687	-4.12833	1.494213
С	-0.02496	-0.04162	3.795699	н	2.938583	-5.14106	1.160395
н	-0.04257	-0.28	4.869205	С	-5.77986	-2.58437	-3.37321
Н	0.193496	1.027454	3.701872	н	-5.95864	-3.07689	-4.32504

Н	0.802215	-0.59855	3.344813	С	3.364694	3.522967	-3.5603
С	-5.29655	2.108498	-0.96556	н	3.445396	4.291739	-4.32237
Н	-5.25237	1.268431	-1.65063	С	-5.50326	4.286275	0.80173
С	-0.31168	-3.18444	-1.93842	Н	-5.57423	5.13188	1.480597
Н	0.277373	-2.29845	-2.1541	С	-0.66084	5.388732	-1.12052
С	3.623088	-1.49717	2.254849	Н	-0.7792	6.20771	-1.82518
С	-0.4011	3.281818	0.728015	С	0.383694	4.443784	0.866891
Н	-0.29987	2.468447	1.439976	Н	1.07507	4.531295	1.701699
С	6.068658	-0.99656	-0.49237	С	2.152631	3.306803	-2.88101
Н	5.760342	-1.7255	0.245502	Н	1.271577	3.902322	-3.09103
С	4.257626	0.438879	3.786611	С	0.278234	-4.44345	-2.16107
Н	4.428257	-0.23223	4.620524	Н	1.284898	-4.48902	-2.56852
С	6.745684	0.876539	-2.40589	С	0.256273	5.499076	-0.05513
Н	6.996344	1.613037	-3.15997	н	0.849288	6.402536	0.060322
С	-2.34802	-4.28705	-1.16794	н	-1.66312	2.42325	3.521754
Н	-3.3762	-4.24268	-0.81891	н	-2.88188	1.840448	4.660385
С	-2.60562	1.871078	3.595832	Н	-3.38026	2.444111	3.078736

The theoretically calculated bond length of $1[BF_4]$.

R(1,3)	2.5073	R(41,42)	1.0829
R(1,6)	2.0966	R(41,119)	1.3987
R(1,7)	2.0665	R(43,44)	1.0958
R(1,8)	2.0757	R(43,45)	1.0938
R(1,9)	2.0771	R(43,52)	1.5446
R(1,10)	2.0554	R(46,47)	1.0875
R(2,4)	2.4193	R(46,50)	1.4072
R(2,5)	2.4223	R(46,105)	1.4094
R(2,12)	2.0039	R(48,49)	1.0823
R(2,28)	2.3454	R(48,73)	1.3992
R(2,33)	2.3017	R(50,51)	1.0872
R(2,35)	2.3622	R(50,57)	1.4087
R(2,36)	2.2829	R(52,53)	1.0951
R(2,40)	2.3338	R(52,54)	1.0944
R(4,11)	1.8922	R(55,56)	1.0856
R(4,16)	1.8962	R(55,73)	1.4083
R(4,52)	1.931	R(57,58)	1.0853
R(5,27)	1.8911	R(59,60)	1.0848
R(5,29)	1.8805	R(59,63)	1.4088
R(5,43)	1.9079	R(61,62)	1.0877
R(6,12)	1.1939	R(61,103)	1.4072
R(7,15)	1.3772	R(63,64)	1.0858
R(7,48)	1.3608	R(63,75)	1.4034
R(8,17)	1.3614	R(65,66)	1.088
R(8,37)	1.3779	R(65,95)	1.4068

R(9,19)	1.3595	R(67,68)	1.0862
R(9,32)	1.3769	R(67,91)	1.4069
R(10,34)	1.3813	R(69,70)	1.0945
R(10,41)	1.3633	R(69,71)	1.1003
R(11,23)	1.4084	R(69,72)	1.0944
R(11,65)	1.4136	R(73,74)	1.0849
R(13,14)	1.084	R(75,76)	1.0844
R(13,15)	1.4075	R(77,78)	1.0869
R(13,55)	1.4017	R(77,105)	1.406
R(15,32)	1.4728	R(79,80)	1.0943
R(16,30)	1.412	R(79,81)	1.1007
R(16,67)	1.4139	R(79,82)	1.0953
R(17,18)	1.084	R(83,84)	1.0951
R(17,59)	1.4014	R(83,85)	1.1003
R(19,20)	1.0815	R(83,86)	1.0965
R(19,25)	1.4009	R(87,88)	1.0872
R(21,22)	1.084	R(87,97)	1.4072
R(21,32)	1.407	R(89,90)	1.0844
R(21,38)	1.4026	R(89,107)	1.4094
R(23,24)	1.086	R(91,92)	1.0872
R(23,61)	1.4092	R(91,97)	1.4079
R(25,26)	1.0841	R(93,94)	1.0872
R(25,38)	1.4075	R(93,107)	1.4067
R(27,89)	1.4069	R(93,109)	1.4103
R(27,101)	1.4141	R(95,96)	1.0874
R(28,35)	1.4442	R(95,103)	1.4102
R(28,36)	1.4503	R(97,98)	1.0869
R(28,69)	1.5067	R(99,100)	1.0843
R(29,57)	1.4091	R(99,121)	1.4018
R(29,77)	1.4144	R(101,102)	1.0875
R(30,31)	1.0852	R(101,109)	1.4058
R(30,87)	1.4077	R(103,104)	1.0873
R(33,36)	1.4606	R(105,106)	1.0874
R(33,40)	1.4393	R(107,108)	1.0875
R(33,115)	1.5057	R(109,110)	1.0871
R(34,37)	1.4732	R(111,112)	1.0952
R(34,99)	1.4083	R(111,113)	1.1013
R(35,40)	1.4584	R(111,114)	1.0954
R(35,83)	1.5094	R(115,116)	1.0958
R(36,111)	1.5065	R(115,117)	1.1006
R(37,75)	1.408	R(115,118)	1.0945
R(38,39)	1.0858	R(119,120)	1.0852
R(40,79)	1.5065	R(119,121)	1.4098
		R(121,122)	1.0856

	The theoretically ca	alculated bond length of 1[BF4]]2.
R(1,3)	2.4573	R(42,44)	1.0952
R(1,4)	2.4586	R(42,45)	1.0944
R(1,11)	1.9743	R(46,47)	1.0849
R(1,14)	2.3787	R(46,65)	1.4079
R(1,19)	2.3174	R(48,49)	1.0856
R(1,27)	2.3866	R(48,119)	1.4081
R(1,34)	2.3181	R(50,73)	1.4073
R(1,37)	2.3037	R(51,52)	1.0857
R(2,5)	2.4708	R(51,115)	1.409
R(2,6)	2.0948	R(53,54)	1.0821
R(2,7)	2.0116	R(53,99)	1.4003
R(2,8)	2.0791	R(55,56)	1.0839
R(2,9)	2.0895	R(55,75)	1.4031
R(2,12)	2.0972	R(57,58)	1.0835
R(3,10)	1.8736	R(57,93)	1.4031
R(3,20)	1.8825	R(59,60)	1.0867
R(3,21)	1.903	R(59,103)	1.406
R(4,13)	1.8895	R(61,62)	1.0948
R(4,24)	1.9259	R(61,63)	1.1002
R(4,28)	1.8875	R(61,64)	1.0935
R(6,18)	1.3756	R(65,66)	1.0867
R(6,81)	1.358	R(65,91)	1.407
R(7,11)	1.2016	R(67,68)	1.0871
R(8,33)	1.3775	R(67,87)	1.4066
R(8,83)	1.3603	R(69,70)	1.0952
R(9,50)	1.3768	R(69,71)	1.0994
R(9,97)	1.36	R(69,72)	1.0941
R(10,48)	1.4092	R(73,74)	1.0841
R(10,59)	1.4146	R(73,89)	1.4048
R(12,15)	1.374	R(75,76)	1.0855
R(12,53)	1.3585	R(75,77)	1.4085
R(13,16)	1.4145	R(77,78)	1.0848
R(13,46)	1.4115	R(77,83)	1.4002
R(14,27)	1.4398	R(79,80)	1.0835
R(14,34)	1.4602	R(79,109)	1.4033
R(14,69)	1.5078	R(81,82)	1.0813
R(15,18)	1.4755	R(81,117)	1.4016
R(15,57)	1.4067	R(83,84)	1.0831
R(16,17)	1.0864	R(85,86)	1.0874
R(16,111)	1.4063	R(85,107)	1.4055
R(18,79)	1.4063	R(87,88)	1.0866
R(19,27)	1.4558	R(87,107)	1.4101

R(19,37)	1.4519	R(89,90)	1.0856
R(19,38)	1.5051	R(89,105)	1.4077
R(20,35)	1.407	R(91,92)	1.0864
R(20,85)	1.4149	R(91,111)	1.4083
R(21,22)	1.0937	R(93,94)	1.0854
R(21,23)	1.0956	R(93,99)	1.407
R(21,24)	1.543	R(95,96)	1.0877
R(24,25)	1.0936	R(95,113)	1.4065
R(24,26)	1.0947	R(97,98)	1.0838
R(27,29)	1.505	R(97,105)	1.4028
R(28,51)	1.4084	R(99,100)	1.0845
R(28,95)	1.4144	R(101,102)	1.0869
R(29,30)	1.0942	R(101,103)	1.4093
R(29,31)	1.0925	R(101,119)	1.4077
R(29,32)	1.0999	R(103,104)	1.0868
R(33,50)	1.4762	R(105,106)	1.0846
R(33,55)	1.4078	R(107,108)	1.0865
R(34,37)	1.4484	R(109,110)	1.0855
R(34,61)	1.5049	R(109,117)	1.4061
R(35,36)	1.084	R(111,112)	1.0867
R(35,67)	1.409	R(113,114)	1.0869
R(37,42)	1.5049	R(113,121)	1.4101
R(38,39)	1.1004	R(115,116)	1.0875
R(38,40)	1.0949	R(115,121)	1.4071
R(38,41)	1.095	R(117,118)	1.084
R(42,43)	1.0998	R(119,120)	1.087
		R(121,122)	1.0868