Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Structural characterization and luminescence properties of trigonal Cu(I) iodine/bromine complexes comprising cation $-\pi$ interactions[†]

Xiaolin Yin^{*a*}, Chunmei, Liu^{*a*}, Shuang Liu^{*a*}, Mengmeng Cao^{*a*}, Jeremy M. Rawson^{*b*}, Yan Xu^{*a*,*}, Bin Zhang^{*a*,*}

^aCollege of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.

^bDepartment of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.

* corresponding email address: E-mail: xuyan@zzu.edu.cn, bz@zzu.edu.cn.

Compound reference	1	2	3
Formula	$C_{43}H_{32}CuIN_2P_2$	$C_{43}H_{32}CuBrN_2P_2 \\$	$C_{43}H_{32}CuClN_2P_2$
Temperature/K	291.15	291(2)	293(2)
Crystal system	orthorhombic	orthorhombic	monoclinic
Space group	P212121	P212121	$P2_1/c$
a/Å	10.656(2)	10.6373(18)	18.975(4)
b/Å	17.374(3)	17.157(3)	11.948(2)
c/Å	20.131(4)	19.959(3)	17.490(3)
a/°	90	90	90
β/°	90	90 113.44(3)	
$\gamma^{/\circ}$	90	90	90
Volume/Å ³	3727.2(12)	3642.7(11)	3638.0(12)
Z	4	4	4
$\rho_{calc.} / g \cdot cm^3$	1.478	1.426	1.403
μ / mm^{-1}	1.533	1.818	0.799
F (000)	1665.4	1582.0	1586.0
Radiation	Mo Ka ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.32 to 55.06	6.08 to 54.964°	4.25 to 52.744
Reflections collected	64211	51998	55089
Independent reflections	8546 [R(int) = 0.0368,	8321[R(int) = 0.0477,	7417 [R(int) = 0.0724,
	$R_{sigma} = 0.0257$]	$R_{sigma} = 0.0442$]	$R_{sigma} = 0.0471$]
Data/restraints/parameters	8546/0/443	8321/0/442	7417/937/884
Goodness-of-fit on F ²	1.055	1.022	1.017
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0234$	$R_1 = 0.0305$	$R_1 = 0.0436$
	$wR_2 = 0.0467$	$wR_2 = 0.0600$	wR ₂ =0.1070
CCDC	2129756	2129758	2129759

Table S1 Crystal parameters of complexes 1, 2 and 3.

Complex	Leng	Length/Å		Angle/°	
1	Cu1-P1	2.2808(7)	I1-Cu1-P1	119.612(17)	
	Cu1-P2	2.2514(7)	I1-Cu1-P2	116.265(18)	
	Cu1-I1	2.5258(4)	P1-Cu1-P2	121.31(2)	
2	Cu1-P1	2.2706(10)	Br1-Cu1-P1	119.24(3)	
	Cu1-P2	2.2432(9)	Br1-Cu1-P2	117.28(3)	
	Cu1-Br1	2.3410(6)	P1-Cu1-P2	120.76(4)	
3	Cu1-P1	2.241(4)	Cl1-Cu1-P1	119.5(2)	
	Cu1-P2	2.251(5)	Cl1-Cu1-P2	113.7(2)	
	Cu1-Cl1	2.200(6)	P1-Cu1-P2	125.3(2)	

Table S2 Selected bond lengths [Å] and angles (°) for the Cu(I) complexes 1, 2 and 3.

Fig. S1 Molecular structure of the Cu(I) complex 3. Hydrogen atoms are omitted for clarity.

Thermal ellipsoid plots at 30% probability.

Fig. S2 Simulated absorption spectrum of 2 with frontier molecular orbitals involved in the lowest energy transition.

Fig. S3 Emission decay transient of copper(I) complexes 1 and 2 at different temperature (black dot for 298 K, red dot for 77 K).

Fig. S4 ONIOM model for complex 2: the central molecule is defined as the active QM part and

the surrounding molecules are treated as MM part.