Electronic Supplementary Information for

Regulating the proton conductivity of metal organic framework materials through solvent control

Xinxin Wang, ${ }^{a}$ Fengdong Wang, ${ }^{a}$ Chenxi Zhang *a and Qinglun Wang*b

> a. College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China. E-mail: zcx@tust.edu.cn
> b. College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China. E-mail: wangql@nankai.edu.cn

Table of Content

1. Synthesis of PyebH, 1, 2, 3 and 4 S-2
2. FT-IR and NMR spectra of PyebH S-3
3. FT-IR spectra of $\mathbf{1}, \mathbf{2}, \mathbf{3}$ and $\mathbf{4}$ tested after proton conduction S-4
4. Proton conductivity of $\mathbf{1}, \mathbf{2}, \mathbf{3}$ and $\mathbf{4}$ at different humidity S-5
5. Water adsorption of 1,2,3 and $\mathbf{4}$ S-6

Synthesis of 4-[2-(4-pyridinyl) vinyl)] -benzoic acid(PyebH): 4-formylbenzoic $\operatorname{acid}(4.61 \mathrm{~g}), 4$-methylpyridine $(2.60 \mathrm{~mL})$ and acetic anhydride $(30 \mathrm{~mL})$ were placed to a 250 mL three-neckedflask under the condition of nitrogen. The reaction solution was heated to reflux for 12 hours, and then water $(60 \mathrm{~mL})$ was added to stop the reaction when the temperature of the reaction solution dropped to room temperature. Then the solution is suction filtered and washed with a mixed solution of methanol and ethanol. Finally, the product was dried in a vacuum oven at $50^{\circ} \mathrm{C}$ for 24 hours to obtain a light yellow solid. Yield: 70%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) $\delta 13.00(\mathrm{~s}, \mathrm{H}), \delta 8.57(\mathrm{~d}, 2 \mathrm{H}), \delta$ $7.96(\mathrm{~d}, 2 \mathrm{H}), \delta 7.76(\mathrm{~d}, 2 \mathrm{H}), \delta 7.60(\mathrm{~d}, 2 \mathrm{H}), \delta 7.43(\mathrm{~s}, \mathrm{H}), \delta 7.38(\mathrm{~s}, \mathrm{H})$. Elemental analysis calcd. (\%) for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, 74.65; H, 4.92; N, 6.21. Found: C, 73.83; H, 4.84; N, 6.13. IR (KBr, cm ${ }^{-1}$, Fig. S1): 3030(m), 2791(w), 1924(w), 1629(vs), 1603(vs), 1286(vs).
Synthesis of $\left\{\left[\mathbf{Z n}(\mathbf{p y e b})_{2}\right](\mathbf{D M F})\left(\mathbf{H}_{2} \mathbf{O}\right)\right\}_{\mathrm{n}} \mathbf{(1) : ~} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 0.1487 \mathrm{~g})$ and $\operatorname{PyebH}(0.5 \mathrm{mmol}, 0.1126 \mathrm{~g})$ were dissolved in a mixed solution of $\operatorname{DMF}(12 \mathrm{~mL})$ and anhydrous ethanol $(12 \mathrm{~mL})$. The solution was ultrasonized for 1 hour and transferred to a Teflon-lined steel autoclave, and heated up to $90^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, colorless and transparent needle-like crystals are obtained, which are dried under vacuum to obtain 1. Yield:43\%. Elemental analysis calcd. (\%) for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Zn}$: C, 61.54; H, 4.83; N, 6.94. Found: C, 60.82 ; H, 4.53; N, 6.02. IR (KBr, cm^{-1}, Fig. 3): 3039(w), 1612(s), 1537(m), 1367(m).

Synthesis of $\left\{\left[\mathbf{Z n}(\mathbf{p y e b})_{2}\right](\mathbf{M e C N})\right\}_{\mathrm{n}}$ (2): The dry $\mathbf{1}$ were soaked in acetonitrile at room temperature for 12 hours. The solvent molecules in the pores were replaced by acetonitrile. Then drying product to get 2. Yield: 87%. Elemental analysis calcd. (\%) for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Zn}$: C, 64.88; H, 4.15; N, 7.57. Found: C, 63.59; H, 4.02; N, 7.43. IR (KBr, cm^{-1}, Fig. 3): 2235(s), 1612(s), 1367(m).
Synthesis of $\left\{\left[\mathbf{Z n}(\mathbf{p y e b})_{2}\right]\left(\mathbf{M e}_{2} \mathbf{C O}\right\}_{\mathrm{n}} \mathbf{(3) :}\right.$: The dry $\mathbf{1}$ were soaked in acetone at room temperature for 12 hours. The solvent molecules in the pores were replaced by acetone. Then drying product to get 3. Yield: 88%. Elemental analysis calcd. (\%) for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Zn}$: C, $65.04 ; \mathrm{H}, 4.55$; N, 4.90. Found: C, 64.82 ; H, 4.33; N, 4.78. IR (KBr, cm^{-1}, Fig. 3): 1716(m), 1612(s), 1367(m).
Synthesis of $\left\{\left[\mathbf{Z n}(\mathbf{p y e b})_{2}\right](\mathbf{D M F})\right\}_{\mathrm{n}}$ (4): The dry $\mathbf{2}$ were soaked in DMF at room temperature for 12 hours. Then drying product to get $\mathbf{4}$. Yield: 89%. Elemental analysis calcd. (\%) for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Zn}$: C, 63.38; H, 4.60; N, 7.16. Found: C, $63.21 ; \mathrm{H}, 4.55$; N , 7.10. IR (KBr, cm^{-1}, Fig. 3): 1668(m), 1612(s), 1367(m).

Fig. S1 FT-IR spectra of 4-[2-(4-pyridyl)vinyl)]-benzoic acid ligand

Fig. S2 Nuclear magnetic resonance hydrogen spectrum diagram of 4-[2-(4-pyridyl)vinyl)]-benzoic acid ligand

Fig. S3 IR spectra of $\mathbf{1 , 2 , 3}$, and $\mathbf{4}$ tested after proton conduction

Fig. S4 Proton conductivity of $\mathbf{1 , 2 , 3}$ and $\mathbf{4}$ at different humidity

Fig. S5 Water adsorption of 1, 2, $\mathbf{3}$ and 4.

