Electronic Supplementary Material (ESI) for New Journal of Chemistry. Electronic Supplementary Material (ESI) for New Journal of Chemistry National de la Recherche Scientifique 2022 This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022 This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Support information

Tb³⁺ luminescence cholate hydrogel-based multi-functionalized platform for Hg²⁺ and NO₂ detection

Jiaxin Yuan^{a, b}; Ao Shen^a; Xiaohui Hao^a; Man Du^{c*}; Xiaoyu Du^a; Shufeng Ma^a; Mengwen Li^a;

Lifeng Zhang^{b*}; Yunxu Yang^{a, b*}

^a Department of Chemistry and Chemical Engineering, School of Chemistry and Biological

Engineering, University of Science and Technology Beijing, Beijing 100083, China.

^b State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China.

^c School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.

Corresponding Author: Yunxu Yang^{a, b}; Lifeng Zhang^b; Man Du^b.

E-mail addresses:

yxyang@ustb.edu.cn (Yunxu Yang);

131310212@163.com (Lifeng Zhang)

mandu@hebust.edu.cn (Man Du).

Contents:

Fig. S1 ⊤	Time-delayed emission spectrum with gradual addition of Hg ²⁺ (0-21
μM).	4
Fig. S2 T	ime-delayed emission spectrum in NO2 (0-5 ppm) environment5
Table S1	Compares with some documents that detect for Hg ²⁺ 5
Table S2.	Compares with some documents that detect for NO ₂ . 6
Fig. S3 T	he mass spectrum of PS-BD. 7
Fig. S4 T	The ¹ H NMR spectrum of PS-BD. 7
Fig. S5 T	he ¹³ C NMR spectrum of PS-BD. 8
Fig. S6	The mass spectrum of the reaction of PS-BD with Hg^{2+} to form
compound	ls8
Fig. S7	The ¹ H NMR spectrum of the reaction of PS-BD with Hg ²⁺ to form
compound	ls9
Fig. S8	The ¹³ C NMR spectrum of the reaction of PS-BD with Hg ²⁺ to form
compound	ls9
Fig. S9 T	he mass spectrum of PS-BS. 10
Fig. S10	The ¹ H NMR spectrum of PS-BS. 10
Fig. S11	The ¹³ C NMR spectrum of PS-BS.—11
Fig. S12	The mass spectrum of the reaction of PS-BS with NO_2 to form
compound	ls11
Fig. S13	The ^{1}H NMR spectrum of the reaction of PS-BS with NO ₂ to form
compound	ls.——12

Fig. S14	The ¹³ C NMR spectrum of the reaction of PS-BS with NO ₂ to form	
compound	ls12)
Reference	ıs13	}

Materials and instrumentation

Ethylene dithiol, 4-biphenylmethanol and 4-phenylbenzaldehyde were purchased from Tianjin Siensi Opto Technology Co., Ltd. (Tianjin, China); Tert-butyldimethylchlorosilane, DMAP (4-dimethylaminopyridine) were purchased from Beijing Coupling Technology Co., Ltd.; Sodium cholate, Tetrachloride hexahydrate was purchased from Beijing Yinuokai Technology Co., Ltd. (Beijing, China); Solvents and other chemical reagents were purchased from Beijing Lanyi Chemical Products Co., Ltd. (Beijing, China), all of which were analytically pure and could be used without further purification. The water used in the experiment was all ultrapure water. Chitosan non-woven fabric was purchased from Tianjing Youtai nonwoven fabric Co. Ltd.

Ultraviolet visible (UV) absorption spectra were obtained by a UV-2600 spectrometer (Techcomp, China), Fluorescence emission studies were carried out with a Hitachi F-4500 Fluorescence Spectrophotometer. ¹H NMR and ¹³C NMR spectra were measured on a Varian Gemin-400 MHz spectrometer with chemical shifts reported in ppm (TMS as internal standard). ESI-HRMS spectra were recorded with Bruker spectrometers. Spectrophotometer CS-520 and iPhone 12 promax were used to construct the smart sensing platform. Scanning Electron Microscope (SEM) images were recorded using Zeiss G300 instrument. Inductively Coupled Plasma-Mass spectrometry (ICP-MS) was recorded in Skyray instrument with ICP20607.

Fig. S1 Time-delayed emission spectrum of PS-BD@ Tb³⁺/hydrogel (20 μ M) excited at 300 nm when Hg²⁺ (0-21 μ M) is gradually added.

Fig. S2 Time-delayed emission spectrum of PS-BS@Tb³⁺/hydrogel (20 μ M) excited at 300 nm after 10 min in NO₂ (0-5 ppm) environment.

Probe	Sensor Materials	Detection	Sensing	Ref.
		Limit	Mode	
1	CN-vinyl	3.7×10⁻ ⁸ M	turn-on	[1]
2	AADT	2.34×10 ⁻⁸ M	both	[2]
3	2,2'-(2,2-di(thiophen-2-yl)eth-ene-1,1-diyl)dipyridine and	4.8 × 10 ^{−8} M	turn-on	[3]
	2,2'-2,2-di([2,2'-bithiophen]-5-yl)ethene-1,1-diyl)dipyridine			
4	naphthalene-based chemodosimeter 1	5.0×10 ⁻⁶ M	turn-on	[4]
5	1-(2-phenyl-2H-[1,2,3]	3.70×10 ⁻⁸ M	turn-on	[5]
	triazole-4-carbonyl)thiosemicarbazide			

Table S1 Compares with some documents that detect for Hg²⁺.

				work
12	PS-BD@Tb ³⁺ /hydrogel	2.4×10 ⁻⁷ M	turn-on	This
11	CDs-AgNPs	3.6×10 ⁻¹² M	both	[11]
10	CA-S(tandain)	1.26×10 ⁻⁷ M	colorimetric	[10]
9	ТЬТАТАВ	4.4×10 ⁻⁹ M	turn-off	[9]
8	D1	6.62×10 ⁻⁷ M	turn-off	[8]
7	pyren-1-ylmethylene-thiazol-2-yl-amine	2.7×10 ⁻⁷ M	colorimetric	[7]
6	Schiff base	2.64× 10 ⁻⁸ M	off-on-off	[6]

 Table S2
 Compares with some documents that detect for NO2.

Number	Sensor Materials	Detection Limit	Sensing Mode	Ref.
1	Ni(II) complexes- sulforhodamine B	-	turn-on	[12]
2	Cu(II) complexes-DDMEP/DMABP	-	turn-on	[13]
3	BODIPY	0.46 ppm	colorimetric	[14]
4	Trimethylsily benzyl ether or oxime groups	0.02 ppm(Ab)	colorimetric	[15]
5	TICT	0.09 ppm	turn-off	[16]
6	CDs-QDs	19 nM	colorimetric	[17]
7	MFM-520	-	adsorption	[18]
8	Tb(BTC) (BTC =	4.0 ppm	turn-off	[19]
	benzene-1,3,5-tricarboxylate)			
9	PS-BD@Tb ³⁺ /hydrogel	0.075 ppm	turn-on	This work

Fig. S5 The ¹³C NMR spectrum of PS-BD.

Fig. S6 The mass spectrum of the reaction of PS-BD with Hg^{2+} to form compounds.

Fig. S7 The ¹H NMR spectrum of the reaction of PS-BD with Hg^{2+} to form compounds.

Fig. S8 The 13 C NMR spectrum of the reaction of PS-BD with Hg²⁺ to form compounds.

Fig. S9 The mass spectrum of PS-BS.

Fig. S10 The ¹H NMR spectrum of PS-BS.

Fig. S11 The ¹³C NMR spectrum of PS-BS.

Fig. S12 The mass spectrum of the reaction of PS-BS with NO_2 to form compounds.

Fig. S13 The ¹H NMR spectrum of the reaction of PS-BS with NO₂ to form compounds.

Fig. S14 The ^{13}C NMR spectrum of the reaction of PS-BS with NO_2 to form compounds.

References

- [1] A.Z. Wang, Y.X. Yang, F.F. Yu, L.W. Xue, B.W. Hu, W.P. Fan, Y.J. Dong, *Talanta*, 2015, **132**, 864-870.
- [2] J. Ma, C. Zhang, Y. Xiao, M. Zhang, Q. Wang, W. Zheng, S. Zhang, J. Photochem. Photobiol. A, 2019, 378, 142-146.
- [3] M.T. Gabr, F.C. Pigge, *Mater. Chem.*, 2017, Front. 1, 1654-1661.
- [4] V.R. Nandhakumar, J. Lumin., 2014, 145, 733-736.
- [5] H. Lin, W. Shi, Y. Tian, F.D. Ma, L.X. Xu, J.C. Ma, Y.H.Hui, Z.F. Xie, J. Lumin., 2015, 157, 280-284.
- [6] G.V. Kumar, M.P. Kesavan, A. Tamilselvi, G. Rajagopal, J. D. Raja, K. Sakthipandi, J. Rajesh,
 G. Sivaraman, *Sens. Actuators B Chem.*, 2018, **73**, 305-315.
- [7] V. Tekuri, S.K. Sahoo, D. R. Trivedi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 218, 19-26.
- [8] Z.E. Chen, H. Zhang, Z. Iqbal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 215, 34-40.
- [9] T.F. Xia, T. Song, G.G. Zhang, Y.J. Cui, Y. Yang, Z.Y. Wang, G.D. Qian, *Chem. Eur. J.*, 2016, 22, 18429-18434.
- [10] X. Chen, J. Fang, S.J. Liao, R. Mia, W.J. Li, C. Gao, D. Tian, W. Li, Sens. Actuators B Chem., 2021, 342, 0925-4005.
- [11] Q.X. Zhou, Y.L. Liu, Y.L. Wu, Z. Li, Y.H. Li, M.H. Liu, T.X. Qu, C.M. Chen, *Chemosphere*, 2021, **274**, 129959.
- [12] Y. Yan, K. Saarangan, H. Yu, S. Ramishett, L.W. Deng, S.H. Wang, L. Huang, D.J. Huang, J. Am. Chem. Soc., 2013, 135, 5312–5315.

- [13] Biplab Mondal and Vikash Kumar, RSC Adv., 2014, 4, 61944.
- [14] L.A. Juárez, A.M. Costero, M. Parra, S. Gil, F. Sancenón and R. Martínez-Máñez, *Chem. Commun.*, 2015, **51**, 1725-1727.
- [15] A.M. Costero, L.A. Juárez, M. Parra, S. Gil, J. Ródenas, R. Martinez-Manez, F. Sancenón, *RSC Adv.*, 2016, 6, 43719–43723.
- [16] J.B. Chen, B. Li, Y. Xiong, J. Sun, Sens. Actuators B Chem., 2018, 255, 275-282.
- [17] Y.H. Yan, J. Sun, K. Zhang, H.J. Zhu, H. Yu, M.T. Sun, D.J. Huang, S.H. Wang, Anal. Chem., 2015, 87, 2087–2093.
- [18] J.N. Li, X. Han, X.R. Zhang, A.M. Sheveleva, Y.Q. Cheng, F. Tuna, E.J.L. McInnes, L.J.M. McPherson, S.J. Teat, L.L. Daemen, A.J. Ramirez-Cuesta, M. Schröder, S.H. Yang, *Nat. Chem.*, 2019, **11**, 1085–1090.
- [19] F.G. Moscoso, J. Almeida, A. Sousaraei, T. Lopes-Costa, A.M.G. Silva, J. Cabanillas-Gonzalez, L. Cunha-Silva, J. M. Pedrosa, *Mol. Syst. Des. Eng.*, 2020, 5, 1048-1056.