Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Ni_xP and Mn₃O₄ dual co-catalysts separately deposited on g-C₃N₄/red phosphorus hybrid photocatalyst for efficient hydrogen evolution

Qinyi Mao, Dandan Li, Yuming Dong*

International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

* Corresponding author, Email: dongym@jiangnan.edu.cn.

Photochemical formation of CNP-Ni-Mn

Scheme S1. The proposed photochemical synthesis route of CNP-Ni-Mn.

CNP-Ni-Mn is prepared by a two-step photodeposition process (Scheme S1). The first step is to form reduction co-catalyst Ni_xP on the conduction band by adding NiCl₂. During this process, P (0) at the conduction band is reduced to Ni_xP ($+\delta$) by photo-generated electron (eq 2), and P (0) at the valence band is oxidized to PO_x ($+\delta$) (eq 3).

$$CNP + h\nu \rightarrow CNP (e^{-} + h^{+})$$
(1)

$$P^{0} + Ni^{2+} + \delta e^{-} \rightarrow Ni_{x}P$$
⁽²⁾

$$P^0 + \delta h^+ \to PO_x \tag{3}$$

The second step is to deposit the oxidation co-catalyst Mn_3O_4 at the valence band position. In this process, the product CNP-Ni of the first step was added as a carrier. After photo-excitation generates electrons and holes (eq. 4), hydrogen is producing at the conduction band position due to the presence of the reduction co-catalyst (eq. 5), and the generated hydrogen gas has been measured by gas chromatography. At the valence band position, Mn^{2+} is oxidized by photo-generated holes to form oxidation co-catalyst Mn_3O_4 (eq. 6).

$$CNP-Ni + h\nu \rightarrow CNP-Ni (e^{-} + h^{+})$$
(4)

$$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \to \mathrm{H}_{2} \tag{5}$$

$$3Mn^{2+} + 6h^{+} + 4H_2O \rightarrow Mn_3O_4 + 6H^{+}$$
(6)

	CNP /mg	NiCl ₂ (0.1M) /mL	MnSO ₄ (0.1M) /mL	H ₂ O /mL	Irradiation time /min	Heating time (50°C) /min	Stirring time /min
А	30	-	1	9	50	-	-
В	30	1	-	9	50	-	-
С	30	1	1	8	50	-	-
D	30	-	1	9	50	-	-
	30(CNP-Mn)	1	-	9	50	-	-
Е	30	1	-	9	50	-	-
	30(CNP-Ni)	-	1	9	50	-	-
F	30	1	-	9	-	50	-
	30(CNP-Ni)	-	1	9	-	50	-
G	30	1	-	9	-	-	50
	30(CNP-Ni)	-	1	9	-	-	50
Н	30(P + CN)	1	-	9	50	-	-
	30(P/CN-Ni)	-	1	9	50	-	-

 Table S1. Conditions of control experiments.

Fig. S1. TEM-EDX of CNP-Ni-Mn.

Fig. S2. EDX-Mapping images of C, N, P, Ni and Mn elements in CNP-Ni-Mn.

Fig. S3. The high-resolution XPS spectra of C 1s (a) and N 1s (b) in pure $g-C_3N_4$.

Fig. S4. The XRD patterns of $g-C_3N_4$ and CNP (a), CNP and CNP-Ni-Mn (b).

Fig. S5. FT-IR spectroscopy of $g-C_3N_4$, CNP and CNP-Ni-Mn.

Fig. S6. (a) Photocatalytic hydrogen production activity of catalyst A-E in 20 vol% TEOA solution in Table 1. (b) Comparison of irradiation (E), heating (F), stirring (G) and red phosphorus (H) in 20 vol% TEOA solution. (d) Photocatalytic hydrogen production activity of different addition amount of NiCl₂ and MnSO₄ (1:1) in 20 vol% TEOA solution.

Fig. S7. TEM (a) and HR – TEM (b) of CNP-Ni-Mn after photocatalysis. The measured lattice fringes of 0.222 nm and 0.470 nm correspond to the (111) crystal face Ni₂P and the (200) crystal face of Mn_2O_3 .

Fig. S8. UV-vis diffuse reflectance spectroscopy of pure g-C₃N₄, CNP, CNP-Ni and CNP-Ni-Mn.

Fig. S9. Tauc plots of $g-C_3N_4$ (a) and red P (b). XPS spectra of $g-C_3N_4$ (c) and red P (d) for valence band offset determination.

Fig. S10. (a) Tauc plots of CNP. (b) XPS spectra of CNP for valence band offset determination.

Fig. S11. PL spectra of CNP and CNP-Ni-Mn under the excitation wavelength of 375 nm.

Photocatalyst	Co-catalysts	Light source	Sacrificial agent	Activity (μmol h ⁻¹ g ⁻¹)	Stability at least (h)	Ref. (year)
g-C ₃ N ₄ /WO ₃	Ni(OH) _x	$\lambda > 400 \text{ nm}$ (Xe)	TEOA	576	12	¹ (2017)
$g-C_3N_4$	Co	AM 1.5 (Xe)	TEOA	2296	48	² (2018)
$g-C_3N_4$	MoS_2	$\lambda \ge 400 \text{ nm}$ (Xe)	Lactic acid	660	9	³ (2018)
N-TiO ₂ /g-C ₃ N ₄	Ni _x P	$780 > \lambda >$ 350 nm (Xe)	TEOA	5438	10	⁴ (2018)
TiO ₂	CuO _x	AM 1.5G (Xe)	Methanol	407	_	⁵ (2018)
CaIn ₂ S ₄	MnO _x	$750 \text{ nm} \ge \\ \lambda \ge 420 \text{ nm} \\ (Xe)$	$Na_2S + Na_2SO_3$	5520		⁶ (2019)
g-C ₃ N ₄	NiS, CoS _x , CuS _x	420 nm (LED)	TEOA	244	7.5	⁷ (2021)
g-C ₃ N ₄	Ni–Ag	$\lambda \ge 420 \text{ nm}$ (Xe)	Methanol	2137.5	16	⁸ (2022)
g-C ₃ N ₄ /red P	Ni _x P-Mn ₃ O ₄	AM 1.5 (Xe)	TEOA	5851.3	8	This work

Table S2. The co-catalysts for photocatalytic hydrogen evolution reaction.

- 1. K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang and X. Zhang, *Chinese J. Catal.*, 2017, **38**, 240-252.
- 2. W. Chen, Y. Wang, M. Liu, L. Gao, L. Mao, Z. Fan and W. Shangguan, *Appl. Surf. Sci.*, 2018, **444**, 485-490.
- 3. X. Shi, M. Fujitsuka, S. Kim and T. Majima, *Small*, 2018, **14**, e1703277.
- M. Wu, J. Zhang, C. Liu, Y. Gong, R. Wang, B. He and H. Wang, *ChemCatChem*, 2018, 10, 3069-3077.
- 5. P. A. Bharad, A. V. Nikam, F. Thomas and C. S. Gopinath, *ChemistrySelect*, 2018, **3**, 12022-12030.
- J. Ding, X. Li, L. Chen, X. Zhang, H. Yin and X. Tian, *ACS Appl. Mater. Interfaces*, 2019, 11, 835-845.
- 7. M. Wang, J. Cheng, X. Wang, X. Hong, J. Fan and H. Yu, *Chinese J. Catal.*, 2021, **42**, 37-45.
- 8. F. Sarwar, M. Tahir and H. Alias, *Mater. Sci. Semicond. Process.*, 2022, 137.