Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information for Pyrazole-, Isoxazole- and Pyrrole-ring Fused Derivatives of C₆₀: Synthesis and electrochemical properties as well as morphological characterization

Mohammad H. BinSabt^a, Abdulrahman Alazemi^{*a}, Hamad M. Al-Matar^a, Alan L. Balch^b, and Mona A. Shalaby^a

^{*a*} Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait

^b Department of Chemistry, University of California at Davis, One Shields Avenue,

Davis, California 95616, United States

^a *Corresponding author. E-mail address: a.alazmi@ku.edu.kw

Figure S1. The ¹H NMR spectrum of compound 4 (600.13 MHz, solvent CDCl₃)

Figure S2. HPLC chromatogram of compound 4

Figure S3. HRMS (ESI-TOF) of compound 4

Figure S4. The ¹H NMR spectrum of compound 5 (600.13 MHz, solvent CDCl₃)

Figure S5. The ¹³C NMR spectrum of compound 5 (150 MHz, solvent $CS_2 : CDCl_3 = 3:1$)

Figure S6. H-H COSY NMR spectrum of compound 5 (600.13 MHz, solvent CDCl₃)

Figure S7. The HSQC spectrum of compound **5** (600.13 MHz for ¹H and ¹³C, solvent CS_2 : $CDCl_3 = 3:1$)

Figure S8. The HMBC spectrum of compound **5** (600.13 MHz for ¹H and ¹³C, solvent CS_2 : $CDCl_3 = 3:1$)

Figure S9. HPLC chromatogram of compound 5

Figure S10. MALDI-TOF spectrum of compound 5

Figure S11. The ¹H NMR spectrum of compound 6 (600.13 MHz, solvent CDCl₃)

Figure S12. The ¹³C NMR spectrum of compound 6 (150 MHz, solvent $CS_2 : CDCl_3 = 3:1$)

Figure S13. H-H COSY NMR spectrum of compound 6 (600.13 MHz, solvent CDCl₃)

Figure S14. The HSQC spectrum of compound 6 (600.13 MHz for ¹H and ¹³C, solvent CS_2 : $CDCl_3 = 3:1$)

Figure S15. The HMBC spectrum of compound **6** (600.13 MHz for ¹H and ¹³C, solvent CS_2 : $CDCl_3 = 3:1$)

Figure S16. HPLC chromatogram of compound 6

Figure S17. MALDI-TOF spectrum of compound 6

Figure S18. Square wave voltammograms of C_{60} , FPz C_{60} (4), FPy C_{60} (5), and FOx C_{60} (6) in toluene/CH₃CN (4:1) solutions with 0.1 M TBAP; V vs. Fc/Fc⁺; scan rate was 100 mVs⁻¹.

Figure S19. Cyclic voltammogram of compound 5 with the first reduction peak.

Figure S20. Cyclic voltammogram of compound 6 with the first reduction peak.